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Preface

At the end of the last century, differential geometry was challenged by the-
oretical physics: new objects were displaced from the periphery of the classical
theories to the center of attention of the geometers. These are the irrational tori,
quotients of the 2-dimensional torus by irrational lines, with the problem of quasi-
periodic potentials, or orbifolds with the problem of singular symplectic reduction,
or spaces of connections on principal bundles in Yang-Mills field theory, also groups
and subgroups of symplectomorphisms in symplectic geometry and in geometric
quantization, or coadjoint orbits of groups of diffeomorphisms, the orbits of the
famous Virasoro group for example. All these objects, belonging to the outskirts
of the realm of differential geometry, claimed their place inside the theory, as full
citizens. Diffeology gives them satisfaction in a unified framework, bringing simple
answers to simple problems, by being the right balance between rigor and simplic-
ity, and pushing off the boundary of classical geometry to include seamlessly these
objects in the heart of its concerns.

However, diffeology did not spring up on an empty battlefield. Many solutions
have been already proposed to these questions, from functional analysis to noncom-
mutative geometry, via smooth structures a la Sikorski or a la Frolicher. For what
concerns us, each of these attempts is unsatisfactory: functional analysis is often an
overkilling heavy machinery. Physicists run fast; if we want to stay close to them we
need to jog lightly. Noncommutative geometry is uncomfortable for the geometer
who is not familiar enough with the C*-algebra world, where he loses intuition and
sensibility. Sikorski or Frolicher spaces miss the singular quotients. Perhaps most
frustrating, none of these approaches embraces the variety of situations at the same
time.

So, what’s it all about? Roughly, a diffeology on an arbitrary set X declares,
which of the maps from R™ to X are smooth, for all integers n. This idea, refined
and structured by three natural axioms, extends the scope of classical differential
geometry far beyond its usual targets. The smooth structure on X is then defined
by all these smooth parametrizations, which are not required to be injective. This is
what gives plenty of room for new objects, the quotients of manifolds for example,
even when the resulting topology is vague. The examples detailed in the book
prove that diffeology captures remarkably well the smooth structure of singular
objects. But quotients of manifolds are not the sole target of diffeology, actually
they were not even the first target, which was spaces of smooth functions, groups of
diffeomorphisms. Indeed, these spaces have a natural functional diffeology, which
makes the category Cartesian closed. But also, the theory is closed under almost all
set-theoretic operations: products, sums, quotients, subsets etc. Thanks to these
nice properties, diffeology provides a fair amount of applications and examples and
offers finally a renewed perspective on differential geometry.

xvii
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Also note the existence of a convenient powerset diffeology, defined on the set
of all the subsets of a diffeological space. Thanks to this original diffeology, we
get a clear notion of what is a smooth family of subsets of a diffeological space,
without needing any model for the elements of the family. This powerset diffeology
«encodes genetically » the smooth structure of many classical constructions without
any exterior help. The set of the lines of an affine space, for example, inherits a
diffeology from the powerset diffeology of the ambient space, and this diffeology
coincides with its ordinary manifold diffeology, which is remarkable.

Moreover, every structural construction (homotopy, Cartan calculus, De Rham
cohomology, fiber bundles etc.) renewed for this category, applies to all these de-
rived spaces (smooth functions, differential forms, smooth paths etc.) since they
are diffeological spaces too. This unifies the discourse in differential geometry and
makes it more consistent, some constructions become more natural and some proofs
are shortened. For example, since the space of smooth paths is itself a diffeological
space, the Cartan calculus naturally follows and then gives a nice shortcut in the
proof of homotopic invariance of the De Rham cohomology.

What about standard manifolds? Fortunately, they become a full subcategory.
Then, considering manifolds and traditional differential geometry, diffeology does
not subtract anything nor add anything alien in the landscape. About the natural
question, “Why is such a generalization of differential geometry necessary, or for
what is it useful?” the answer is multiple. First of all, let us note that differential
geometry is already a generalization of traditional Greek Euclidean geometry, and
the question could also be raised at this level. More seriously, on a purely technical
level, considering many of the recent heuristic constructions coming from physics,
diffeology provides a light formal rigorous framework, and that is already a good
reason. Two examples:

Ezample 1. For a space equipped with a closed 2-form, diffeclogy gives a rig-
orous meaning to the moment maps associated with every smooth group action by
automorphisms. It applies to every kind of diffeological space, it can be a manifold,
a space of smooth functions, a space of connection forms, an orbifold or even an
irrational torus. It works that way because the theory provides a unified coherent
notion of differential forms, on all these kinds of spaces, and the tools to deal with
them. In particular, such a general diffeological construction clearly reveals that
the status of moment maps is high in the hierarchy of differential geometry. It
is clearly a categorical construction which exceeds the ordinary framework of the
geometry of manifolds: every closed 2-form on a diffeological space gets naturally
a unwwersal moment map associated with its group of automorphisms.

Ezample 2. Every closed 2-form on a simply connected diffeological space® is
the curvature of a connection form on some diffeological principal bundle. The
structure group of this bundle is the diffeological torus of periods of the 2-form, i.e.,
the quotient of the real line by the group of periods of the 2-form. This construction
is completely universal and applies to every diffeological space and to every closed
2-form, whether the form is integral or not. The only condition is that the group
of periods is diffeologically discrete, that is, a strict subgroup of the real numbers.
The construction of a prequantization bundle corresponds to the special case when
the periods are a subgroup of the group generated by the Planck constant h or,

IThe general case is a work in progress.



PREFACE xix

if we prefer, when the group of periods is generated by an integer multiple of the
Planck constant.

The crucial point in these two constructions is that the quotient of a diffeo-
logical group — the group of momenta of the symmetry group by the holonomy
for the first example, and the group of real numbers by the group of periods for
the second — is naturally a nontrivial diffeological group whose structure is rich
enough to make these generalizations possible. In this regard, the contravariant
approaches — Sikorski or Frolicher differentiable spaces — are globally helpless be-
cause these crucial quotients are trivial, and this is irremedible. By respecting the
internal (nontrivial) structure of these quotients, diffeology leads one to a good level
of generality for such general constructions and statements. The reason is actually
quite simple, the contravariant approaches define smooth structures by declaring
which maps from X to R are smooth. Doing so, they capture only what looks like
R — or a power of R — in X, killing everything else. The quotient of a manifold
may not resemble R at all, if we wanted to capture its singularity, we would have
to compare it with all kinds of standard quotients. A contrario, diffeology as a co-
variant approach assumes nothing about the resemblance of the diffeological space
to some Euclidean space. It just declares what are the smooth families of elements
of the set, and this is enough to retrieve the local aspect of the singularity, if it is
it what we are interested in.

Another strong point is that diffeology treats simply and rigorously infinite-
dimensional spaces without involving heavy functional analysis, where obviously it
is not needed. Why would we involve deep functional analysis to show, for example,
that every symplectic manifold is a coadjoint orbit of its group of automorphisms?
It is so clear when we know that it is what happens when a Lie group acts tran-
sitively, and the group of symplectomorphisms acts transitively. In this case, and
maybe others, diffeology does the job easily, and seems to be, here again, the right
balance between rigor and simplicity. Recently A. Weinstein et al. wrote “For our
purposes, spaces of functions, vector fields, metrics, and other geometric objects are
best treated as diffeological spaces rather than as manifolds modeled on infinite-
dimensional topological vector spaces” [BEW10).

NoTE A. The axiomatics of Fspaces différentiels, which became later the diffeo-
logical spaces, were introduced by J.-M. Souriau in the beginning of the eighties
[Sou80]. Diffeology is a variant of the theory of differentiable spaces, introduced
and developed a few years before by K.T. Chen [Che77]. The main difference
between these two theories is that Souriau’s diffeology is more differential geome-
try oriented, whereas Chen’s theory of differentiable spaces is driven by algebraic
geometry considerations.

NoTE B. I began to write this textbook in June 2005. My goal was, first of all,
to describe the basics of diffeology, but also to improve the theory by opening new
fields inside, and by giving many examples of applications and exercises. If the
basics of diffeology and a few developments have been published a long time ago
now [Sou80] [Sou84] [Don84| [Igl85], many of the constructions appearing in
this book are original and have been worked out during its redaction. This is what
also explains why it took so long to complete. I chose to introduce the various
concepts and constructions involved in diffeology from the simple to the complex,
or from the particular to the more general. This is why there are repetitions, and
some constructions, or proofs, can be shortened, or simplified. I included sometimes
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these simplifications as exercises at the end of the sections. In the examples treated,
I tried to clearly separate what is the responsibility of the category and what is
specific. I hope this will help for a smooth progression in the reading of this text.

NoTE C. By the time I wrote these words, and seven years after I began this project,
a few physicists or mathematicians have shown some interest in diffeology, enough
to write a few papers [BaHo09] [StalO] [Sch11]. The point of view adopted
in these papers is strongly categorical. Diffeology is a Cartesian closed category,
complete and cocomplete. Thus, diffeology is an « interesting beast » from a pure
categorical point of view. However, if I understand and appreciate the categorical
point of view, it does not correspond to the way I apprehended this theory. I may
not have commented clearly enough, or exhaustively, on the categorical aspects
of the constructions and objects appearing there because my approach has been
guided by my habits in classical differential geometry. I made an effort to introduce
a minimum of new vocabulary or notation, to give the feeling that studying the
geometry of a torus or of its group of diffeomorphisms, or the geometry of its
quotient by an irrational line, is the same exercise, involving the same concepts
and ideas, the same tools and intuition. I believe that the role of diffeology is to
bring closer the objects involved in differential geometry, to treat them on an equal
footing, respecting the ordinary intuition of the geometer. All in all, T no longer
see diffeology as a replacement theory, but as the natural field of application of
traditional differential geometry. But I judged, at the moment when I began this
textbook, that diffeology was far enough from the main road to avoid moving too
far away. Maybe it is not true anymore, and it is possible that, in a future revision
of this book, I shall insist, or write a special chapter, on the categorical aspects of
diffeology.

CONTENTS OF THE BOOK

Throughout its nine chapters, the contents of the book try to cover, from the
point of view of diffeology, the main fields of differential geometry used in theoret-
ical physics: differentiability, groups of diffeomorphisms, homotopy, homology and
cohomology, Cartan differential calculus, fiber bundles, connections, and eventually
some comments and constructions on what wants to be symplectic diffeology.

Chapter 1 presents the abstract constructions and definitions related to dif-
feology: objects are diffeologies, or diffeological spaces, and morphisms are smooth
maps. This part contains all the categorical constructions: sums, products, subset
diffeology, quotient diffeology, functional diffeology.

In Chapter 2 we shall discuss the local properties and related constructions,
in particular: D-topology, generating families, local inductions or subductions, di-
mension map, modeling diffeology, in brief, everything related to local properties
and constructions.

In Chapters 3 and 4, we shall see the notion of diffeological vector spaces,
which leads to the definition of diffeological manifolds. Each construction is illus-
trated with several examples, not all of them coming from traditional differential
geometry. In particular the examples of the infinite-dimensional sphere and the
infinite-projective space are treated in detail.

Chapter 5 describes the diffeological theory of homotopy. It presents the defini-
tions of connectedness, Poincaré’s groupoid and fundamental groups, the definition
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of higher homotopy groups and relative homotopy. The exact sequence of the rela-
tive homotopy of a pair is established. Everything relating to functional diffeclogy
of iterated spaces of paths or loops finds its place in this chapter.

Chapter 6 is about Cartan calculus: exterior differential forms and De Rham
constructions, their generalization to the context of diffeology. Differential forms
are defined and presented first on open subsets of real vector spaces, where every-
thing is clearly explicit, and then carried over to diffeologies. Then, we shall see
exterior derivative, exterior product, generalized Lie derivative, generalized Cartan
formula, integration on chain, De Rham cohomology on diffeology, chain homotopy
operator and obstructions to exactness of differential forms. We shall also see a
very useful formula for the variation of the integral of differential forms on smooth
chains. In particular, the generalization of Stokes’ theorem; the homotopic invari-
ance of De Rham cohomology, and the generalized Cartan formula are established
by application of this formula.

Chapter 7 talks about diffeological groups and gives some constructions rela-
tive to objects associated with diffeological groups, for instance the space of its
momenta, equivalence between right and left momenta, etc. Smooth actions of
diffeological groups and natural coadjoint actions of diffeological groups on their
spaces of momenta are defined.

Chapter 8 presents the theory of diffeological fiber bundles, defined by local
triviality along the plots of the base space (not to be confused with the local triviality
of topological bundles). It is more or less a rewriting of my thesis [Igl85]. We shall
define principal and associated bundles, and establish the exact homotopy sequence
of a diffeological fiber bundle. The construction of the universal covering and the
construction of coverings by quotient is also a part of the theory, as well as the
generalization of the monodromy theorem in the diffeological context. We shall
also see, in this general framework, how we can understand connections, reductions,
construction of the holonomy bundle and group. In the same vein, we shall represent
any closed 1-form or 2-form on a diffeological space by a special structured fiber
bundle, a groupoid.

In Chapter 9 we discuss symplectic diffeology. It is an attempt to generalize to
diffeological spaces the usual constructions in symplectic geometry. This construc-
tion will use an essential tool, the moment map, or more precisely its generalization
in diffeology. We have to note first that, if diffeology is perfectly adapted to de-
scribe covariant geometry, i.e., the geometry of differential forms, pullbacks etc., it
needs more work when it comes to dealing with contravariant objects, for example
vectors. This is why it is better to introduce directly the space of momenta of a
diffeological group, the diffeological equivalent of the dual of the Lie algebra, with-
out referring to some putative Lie algebra. Then, we generalize the moment map
relative to the action of a diffeological group on a diffeological space preserving a
closed 2-form. This generalization also extends slightly the classical moment map
for manifolds. Thanks to these constructions, we get the complete characteriza-
tion of homogeneous diffeological spaces equipped with a closed 2-form w. This
theorem is an extension of the well-known Kirillov-Kostant-Souriau theorem. It
applies to every kind of diffeological spaces, the ones regarded as singular by tra-
ditional differential geometry, as well as spaces of infinite dimensions. It applies
to the exact/equivariant case as well as the not-exact/not-equivariant case, where
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exact here means Hamiltonian. In fact, the natural framework for these construc-
tions is some equivariant cohomology, generalized to diffeology. This theory locates
pretty well all the questions related to exactness versus nonexactness, equivari-
ance versus nonequivariance, as well as the so-called Souriau symplectic cohomology
[Sou70]. Incidentally, this definition of the moment map for diffeology gives a way
for defining symplectic diffeology, without considering the kernel of a 2-form for a
diffeological space, what can be problematic because of the contravariant nature of
the kernel of a form. They are defined as diffeological spaces X, equipped with a
closed 2-form w which are homogeneous under some subgroup of the whole group of
diffeomorphisms preserving w, and such that the moment map is a covering. This
definition can be considered as strong, but it includes a lot of various situations.?
For example every connected symplectic manifold is symplectic in this meaning.
Some refinements are needed to deal with some nonhomogeneous singular spaces
like orbifolds for example, but this is still a work in progress. Many questions are
still open in this new framework of symplectic diffeology. I discuss some of them
when they appear throughut the book.

ON THE STRUCTURE OF THE BOOK

The book is made up of numbered chapters, each chapter is made of unnum-
bered sections. Each section is made of a series of numbered paragraphs, with a
title which summarizes the content. Throughout the book, we refer to the num-
bered paragraphs as (art. X). Paragraphs may be followed by notes, examples, or a
proof if the content needs one. This structure makes the reading of the book easy,
one can decide to skip some proofs, and the title of each paragraph gives an idea
about what the paragraph is about. Moreover, at the end of most of the sections
there are one or more exercises related to their content. These exercises are here
to familiarize the reader with the specific techniques and methods introduced by
diffeology. We are forced, sometimes, to reconsider the way we think about things
and change our methods accordingly. The solutions of the exercises are given at
the end of the book in a special chapter. Also, at the end of the book there is a
list of the main notations used. There is no index but a table of contents which
includes the title of each paragraph, so it is easy to find the subject in which one
is interested in, if it exists.
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