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Foreword

Arthur Nowick and I both started research in the field of diffusion in
solids some 35 years ago. The intervening period has made us, with certainty,
much older, only arguably much wiser. This area of research has proved
remarkably durable for its fundamental interest to both condensed-matter
physicists and materials scientists, as evidenced by the contents of this
volume, which contains contributions from sexagenarians (like Nowick
and me) along with those from young research workers a third our age. It
is perhaps in the nature of the beast that the elementary diffusional process
is so very fundamental and ubiquitous in the art and science of dealing with
matter in its condensed phase that it never ceases to be useful but, at the
same time, is a problem which is never really solved. 1t remains important
by any measure.

Interest in diffusion is as old as metallurgy or ceramics, but the scientific
study of the phenomenon may probably be dated from the classic papers
of H. B. Huntington, which appeared in the Physical Review some four
decades ago. These papers were the first to attempt to identify the basic
underlying atomistic mechanisms respensible for mass transport through
solids by a quantitative theoretical analysis of the activation energies required
for diffusion by exchange, interstitial, and vacancy mechanisms in copper.
Prior to this time, there had been little concern with treating diffusional
phenomena on a microscopic basis, and most research was concerned with
fairly crude observations of overall bulk transfer processes at junctions
between regions with strong compositional differences.

Although large masses of experimental data were prevalent in the
literature—to the extent that whole books dealing with diffusion had already
appeared by the late 1940s—experimental techniques were largely limited to
optical microscopic observations of changes in color and texture and wet
chemical analysis of layers near diffusion boundaries. Most numerical
values of diffusion coefficients were deduced from the familiar (but pain-
fully imprecise) Matano—Boltzmann method of analysis. It was not until
the late 1940s, with the availability of reactor-produced radioisotopes of
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xii FOREWORD

high purity and high specific activity, that measurements of real precision
became possible. The scientific developments since that time have been extra-
ordinary. With precise data available, it became possible to find answers to
precise questions.

Steve Rothman, who wrote the first chapter of this volume, is one of the
pioneers who developed the optimal experiment methods for measuring the
diffusion coefficient by means of radiotracer techniques. No one can expound
with greater authority on this vital aspect of the subject. Since so much of
the past progress, as well as the future, of this field of research is reliant on
acquisition of data of high precision, it is entirely fitting that the book begin
with a review of measurement techniques.

For the first few decades of scientific study of the subject, attention was
focused on identifying the atomistic mechanism or mechanisms which could
be invoked to explain diffusion in the simplest of systems: pure, monatomic,
monocrystalline metals, simple cubic salt crystals, etc. The lattice vacancy
emerged as the dominant defect in most substitutional lattices, with the
singular exception of the silver halides. However, even the simple vacancy
turned out to be more than the ideal point defect calculated by Huntington;
there were relaxation effects which involved a large number of its lattice
neighbors. Neither was it clear that the vacancy acted only singly; there was
good evidence for pairs and higher-order clusters of vacancies in some
systems.

More recently, interest has centered on extending the earlier studies to
the diffusional behavior of more complex systems and structures. Some of
the most exciting recent work is reported in this volume by some of the
world’s leading experts: elemental semiconductors, by Frank, Gosele,
Mehrer, and Seeger; oxides, by Nowick; concentrated alloys, by Bakker;
diffusion along grain boundaries, by Balluffi.

Progress in theory has been somewhat less dramatic than that in experi-
ment over the four decades. It has been difficult to expand following Hunt-
ington’s original models, which involved ab initio calculations of the total
energies of ground and saddle-point states with and without defects. Only
the differences between these two large energies could be compared with
the activation energies actually measured for diffusion. The theoretical
errors in the calculated differences were far larger than the experimental
uncertainties in the activation energies, even if no relaxation effects were
considered. If these are included—to be consistent with experimental find-
ings—lattice symmetry is lost in the vicinity of the defects, and even ground-
state energies are nearly impossible to calculate with any degree of precision.
Certain critical areas, however, have yielded to the ingenuity of theorists.
I am pleased to see the review by Le Claire and Rabinovitch of the mathe-
matical analysis of diffusion along dislocations.
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The advent of modern, high-speed computers has made possible a new
kind of theory, inconceivable four decades ago. It is now possible to perform
large-scale simulations of diffusional motions inside the mathematical
“lattice’’ of a computer’s memory. There, one can follow individual atomic
jumps and sequences of jumps and try to correlate this microscopic behavior
with observed macroscopic tracer motion. Murch’s chapter brings us up to
date on these methods.

One of the bases for all diffusion theories is the so-called theory of
absolute reaction rates, initially introduced by Wigner and Eyring as a
means to describe chemical reactions between systems in equilibrium.
Activation energies and entropies are equated to differences in Gibbs free
energies between ground and excited saddle-point states, and the manipula-
tions of normal thermodynamics are used to relate calculated parameters
to experiment. A basic question, most often avoided by theorists, is why
should such parameters, deduced for an equilibrium system, be valid
descriptions for diffusion, which is patently a nonequilibrium process? The
connection between the kinetic theory of the process, which involves con-
sideration of the enormous spectrum of lattice modes which must enter into
both formation and motion of defects, and the reaction-rate parameters
has only very recently been brought into focus by the exciting work of C. P.
Flynn and some of his co-workers, including G. Jacucci. It is fitting that the
final chapter in this volume gives us Jacucci’s up-to-date account of these
new developments.

Department of Physics DaviD LAZARUS
and Materials Research Laboratory

University of lllinois

Urbana, lllinois



Preface

This book is a sequel to ‘“‘Diffusion in Solids: Recent Developments,”
edited by A. S. Nowick and J. J. Burton and published in 1975 by Academic
Press. By following the aims of the original work, we have chosen to focus
upon some of the most active areas of diffusion research. Although the
editors’ choice must inevitably be somewhat subjective, we have endeavored
to select those subjects which, in our opinion, have matured to the extent
that there is general agreement on their scope and interpretation.

The backbone of diffusion is undoubtedly the precise measurement of
diffusion coefficients. In the first chapter, S. J. Rothman has compiled
extensive information on the measurement of diffusion coefficients with
radioisotopes. The following three chapters consider diffusion in materials
of substantial technological importance for which, in addition, considerable
basic understanding has developed. W. Frank, U. Gosele, H. Mehrer, and
A. Seeger deal with diffusion in silicon and germanium and A. S. Nowick
with atomic transport in oxides of the fluorite structure, while H. Bakker
analyzes diffusion in concentrated alloys, including intermetallic compounds.

The next two chaptets delve into diffusion along short-circuiting paths.
A. D. Le Claire and A. Rabinovitch analyze the effect of diffusion down
dislocations on the form of the tracer concentration profile, while R. W.
Balluffi deals with the mechanisms of diffusion in grain boundaries in
metals by invoking considerable work done on grain-boundary structure.

In recent years computer simulation has made a substantial contribution
to diffusion theory. The last two chapters are concerned with the two main
streams of such activities. In the first, G. E. Murch describes the application
of the Monte Carlo method to the calculation of random-walk-related
quantities. In the final chapter, G. Jacucci focuses on machine calculations
of the fundamental atomic migration process by reviewing some state-of-
the-art calculations for defect energies and the topology of the saddle surface.
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I. Introduction

A. GENERAL REMARKS

The first measurement of diffusion in the solid state was made by Roberts-
Austen (1896). Many measurements, especially of chemical diffusion in
metals, were made in the 1930s; the field was reviewed by Mehl (1936),
Jost (1952), and Seith (1955). Diffusion research increased after World War
II; the increase was motivated by the connection among diffusion, defects,
and radiation damage and helped by the availability of many artificial
radiotracers. It was at this time that suggestions on how to carry out high-
precision, highly reproducible diffusion experiments were first put forward
(Slifkin et al., 1952; Tomizuka, 1959).

The three major factors that determine the quality of a diffusion measure-
ment are

1. the method used,
2. the care taken in the measurement, and
3. the extent to which the material is specified (Nowick, 1951).

The most accurate method has, in general, been considered to be radio-
tracer sectioning (Tomizuka, 1959}, and most of this article is devoted to
this method, especially to points for which special care must be taken; these
are the measurement of temperature, the accuracy of sectioning, and the
reproducibility of counting the radioactivity.

The importance of specifying the material cannot be overstated. The
measured diffusion coefficient depends on the chemistry and structure of
the sample on which it is measured. Impurities, nonstoichiometry of com-
pounds, grain boundaries, and dislocations can give apparent values of the
diffusion coefficient that are different from, and usually larger than, the
true value.

The objective of this chapter is to describe some experimental techniques
that are useful in carrying out diffusion measurements. We have organized
the chapter around general principles that are applicable to all materials,
and then listed the particulars. The materials we consider are mainly in-
organic solids, especially metaltic materials; however, organic solids are
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also mentioned. The effect of pressure on diffusion is omitted. Previous
reviews covering mainly metals and inorganic crystals have been given by
Hoffman (1951), Tomizuka (1959), Cadek and Janda (1957), Adda and
Philibert (1966, Chapter 4), Lundy (1970), and Beniére (1983). Chadwick
and Sherwood (1975) have reviewed techniques for organic crystals.

Radioactive tracers are essential to many of the experiments described
in this article. Radioactive tracers are hazardous materials, and the experi-
menter who uses them is under the strongest moral obligation to avoid
exposure of his colleagues and contamination of his environment.

B. THE RELATION OF DIFFUSION EXPERIMENTS
TO THE MATHEMATICS OF DIFFUSION

For measurable diffusion to take place a gradient of some kind is neces-
sary. Diffusion is a consequence of the hopping motion of atoms through a
solid. The diffusion coefficient D is defined in Fick’s first law (Fick, 1855;
Manning, 1968),

J=-DVC+CV 1)

where J is the flux of atoms, C their concentration, and V the velocity of the
center of mass, which moves due to the application of a force such as an
electric field or a thermal gradient. A number of different diffusion coefli-
cients exist, e.g., for the diffusion of a radioactive tracer in a chemically
homogeneous solid in the absence of external forces,

J* = —D*V(C* (2a)

where the asterisk denotes the radioactive species. For diffusion in a chemical
gradient,

J=-DvC (2b)

where D is the interdiffusion or chemical diffusion coefficient. Any of these
equations can be combined with the equation of continuity

oClot = —V-J (3)
to vield Fick’s second law
8Cjot = V+(D VC) (4a)

where the mass flow term has been omitted. For a tracer in a homogeneous
system,

0C*/dt = D* V>C* (4b)
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Equations (4a) and (4b) describe the types of diffusion experiments dis-
cussed in this article.
The tracer diffusion coefficient is given also in the atomistic form

D* = ya’Tf (5)

where y is a geometric factor, a the jump distance, I" the atomic jump fre-
quency, and f the correlation factor (Bardeen and Herring, 1951 ; Manning,
1968). It is thus possible, in principle, to measure D* by measuring I' in a
resonance experiment of some kind (Nowick and Berry, 1972; Wolf, 1979).
This kind of experiment will not be treated here.

We are concerned here with diffusion measurements where the diffusion
coefficient is obtained via Fick’s second law, i.e., from a solution of the dif-
fusion equation. Fick’s second law is used rather than his first because
concentrations are easier to measure than fluxes and because the magnitudes
of D in the solid state are so small that the required steady state is seldom
reached.

In order to obtain a solution of the diffusion equation, the initial and
boundary conditions (IC and BC) must be known. The IC correspond to the
distribution of the diffusing substance in the sample before the diffusion
anneal, and the BC describe what happens to the diffusing substance at the
boundaries of the sample during the diffusion anneal. If the experimental
IC and BC correspond to the mathematical conditions, the mathematical
solution to the diffusion equation C(x, y, z, t} will describe the distribution
of the diffusing substance as a function of position in the sample and of
annealing time. The diffusion coefficient is finally obtained by fitting the
experimentally determined C(x,y,z,t) to the appropriate solution of the
diffusion equation with D as a parameter. This chapter describes some
methods for setting up the IC, maintaining the BC as well as the implicit con-
ditions mentioned later in this section, and determining C(x, y, z, 1).

Most laboratory experiments are arranged so that diffusion takes place
in one dimension. The solution of the diffusion equation is then C(x, 1).
One most often determines C(x) at constant ¢, i.e., the concentration dis-
tribution along the diffusion direction after a diffusion annealing time :.
It is also possible to determine C(7) at a constant x (e.g., the concentration at
a surface) or [ [ C(x, 1) dx dt (e.g., the weight gain of a sample as a function
of time).

The IC, BC, and solutions to the diffusion equation (for D = const)
for some common geometries are described below. These, and solutions
for other cases, are given by Crank (1975) and Carslaw and Jaeger (1959).

(i) Thin Layer or Instantancous Source Geometry (Fig. la). An
infinitesimally thin layer («(Df)*/?) of diffusing substance is deposited on
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one surface of a semi-infinite (> (D1)1/?) solid. The initial condition is
C(x, 0) = M5(x) (6)
where J is the Dirac delta function and M the strength of the source in atoms
per unit area. The boundary condition is
aC
- 0.)=0 ()
ox

Le., there is no flux through the surface (impermeable boundary). The solu-
tion is
C(x, 1) = (M/\/nDt) exp(— x?/4Dt) 8)

One determines C(x) for constant ¢.

C/Co

0.8

<o
e}

o
n

{C-Co)r{Cy-Co)

[
n

(=]

=20 -0 0 o 20
_X_
2/01
Fig. 1. Concentration distributions for different initial conditions. Dotted line is for t = 0,

solid line is for a finite 7. (a) Thin layer geometry [case (i)]; (b) thick layer geometry [case (ii)],
solid curve for Dz = h?; (¢) infinite couple [case (iii)]. [After Crank (1975).]



