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Preface to the Second Edition

Since its publication in 1996, Solid State Chemistry has gone through several reprints. It was
therefore felt that a revision of the book is due. Several chapters have been revised and modified
and new materials have been added. The chapters on Reactions of Solids and that on Diffusion
in Solids have been merged. A new chapter on Optical and Dielectric Properties has been added.

I thank many of my friends who helped me during this period, particularly Professor B.
Viswanathan of the Indian Institute of Technology, Madras and Professor Dipan K. Ghosh of
Indian Institute of Technology, Bombay who has kindly revised the chapter on Superconductivity.
I shall be rewarded if the students find this useful.

—AUTHOR



Preface to the First Edition

Even a few years ago, solid state chemistry did not find a place in the chemistry curricula of our
Universities. In fact, the words solid state chemistry used to amuse the physicist, and the chemist
was indifferent to it. The situation changed rapidly when new solids started finding their
applications in the various areas of technology, from solid catalysts to superconducting magnets.
It has been now realised that the chemist has an important role to play in the discovery and
preparation of solids with newer properties through cheaper routes. Today, solid state chemistry
is an important area. I hope this little book will be able to initiate the student into this interesting
subject.

This text is the outcome of a course that I have been teaching at the Indian Institute of
Technology, Bombay for many years. The main objective has been to relate some important
properties of solids to their structure. It begins with the discussion of simple structures like metals
and ionic solids. Point defects have been included as they have a very important role in determining
the properties and reactivities of solids. Some pages have been devoted to aspects of
nonstoichiometry, solid state reactions and phase transition in solids. Electrical and magnetic
properties have been discussed in some details. In order to keep down the bulk of the book that
is intended to be an introductory text, some topics such as thermal and optical properties have
been left out. Superconductivity has become too important to be ignored and I am grateful to
Professor Dipan K. Ghosh of the Department of Physics for writing the chapter on this interesting
subject.

The book has many equations. This is bound to be so. If we want to test the ideas and
models through experiment, we need to express them in mathematical form. Concepts that cannot
be experimentally verified has no meaning in science. Mathematics used in this text is simple.

[ thank a large number of my students for raising many questions in the classroom some of
which I have tried to answer in these pages. [ am particularly thankful to Dr. Ramachandra Bhat
and Dr. Debashis Das for correcting the manuscript as well as to Mr. G. Ravichandran and Dr.
C.V.V. Satyanarayana for many help. Mr. S.S. Shikare deserves all praises for the neat drawings
and Mr. Lalmani Dilgani for technical help.

Financial support from the CDP cell of the Institute is gratefully acknowledged.

[ must thank my wife and children for bearing with my irritable mood, which I must admit,
was not too infrequent, because of time pressure as this book was written without availing of any
form of leave. The shortcomings of the book are the results of my own limitations.

—AUTHOR
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The Crystal Structure

1.1 INTRODUCTION

Intermolecular attraction is minimum in the gaseous state and this disappears completely when
the gas is ideal. The interaction is stronger in liquids and is strongest in solids. Thermal motion
of the molecules increases or decreases by raising or lowering of temperature. The attractive
interaction between the molecules tries to keep them together and the thermal motion is opposed
to that. Hence, it is possible to change a substance from one state to another by changing its
temperature. If a liquid is allowed to cool slowly, the molecules will arrange themselves in an
orderly manner and this will finally result in a crystalline solid. 1f, on the other hand, cooling is
rapid, the molecules will not be able to arrange themselves in order. Rapid densification will give
a glass or an amorphous solid. It is not true that the molecules and atoms in a solid have rigidly
fixed coordinates. But they move only a small distance about their equilibrium positions. In this
book, we are concerned with crystalline solids and the word solid and crystalline solid will be used
synonymously.

What is the stable state of a given material will depend on its free energy. The stable state
will be the one that has the lowest free energy under the given conditions. Free energy A is related
to internal energy U and entropy S of the system as

A=U-ST (1.1)

Internal energy is lowered by an orderly arrangement of the atoms, molecules or ions as that
will lead to maximum energy of interaction. But this will minimise the entropy. Since internal
energy and entropy make opposite contribution to free energy, the state of matter will be determined
by the relative contributions of U and ST to A. If interaction is strong, U is highly negative and
ST can overcome the contribution of the former only at high temperatures. Such a substance will
remain as a solid even at a relatively high temperature.

The basic feature of a crystalline solid is the regular arrangement of the atoms and molecules.
At the macro level, this translates into crystals having sharp boundaries with clear cut shapes. It
is these beautiful shapes of natural crystals that attracted human attention for ages. This beautiful
shape and colour added to their value as gems.

Early studies of crystals began with the observation of their shapes and this is known as
Geometric Crystallography. The description of crystal symmetry in terms of point lattice began in
the mid-nineteenth century. This was followed by X-ray crystal structure determination following
the work of Laue and Bragg on X-ray diffraction by crystals. In the second quarter of the twentieth
century, the presence of lattice defects and their role in determining the properties of crystals
were recognised. We shall not try to follow the development of the subject in a chronological
order as the development of knowledge in an area of science does not take place in the same
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logical way as one would like to see it. But only after enough knowledge gets accumulated that
a subject is put in a logical perspective. Here we shall follow the rational rather than the
chronological course of development of the subject.

Crystal lattice

It is easy to imagine a crystal as a periodic
arrangement of points as shown in figure 1.1. A point
may represent an atom or a group atoms arranged
around it in a real crystal. Let us begin with a single
point. Repeated translation of this point through a
fixed distance a (a periodic translation) will generate ® ™ ® ® s
a linear array of points. This movement is denoted
by a translation vector f. If we add a second
translation t,, it will generate periodically repeating
points on a plane and this is known as a plane lattice.

If a third translation f is added, we get a three » ® - - .
dimensional arrangement of the points that is called Figure 1.1: A two dimensional plane lattice
a space lattice.

The lattice points are imaginary. In a real crystal, they are occupied by atoms or groups of
atoms that are arranged in a regular fashion about the lattice points. This atom or the group of
atoms is the basis and the arrangement of the imaginary points is the lattice. The real crystal is
then:

basis + lattice = crystal.

A two dimensional pattern as is usually found on a curtain cloth or a wall paper is analogous
to a two dimensional crystal lattice. We can have an array of squarely arranged points
(Figure 1.2a) or the points may be arranged along inclined lines (Figure 1.2b). We can select a
single motif and place this motif in the same way about each lattice points. This will give two
different patterns (Figure. 1.2c and 1.2d). By selecting a different motif, we may get a still different
pattern and a large number of patterns can be generated from a limited number of motifs and
lattice arrangements.

Unit cell

We have seen that two noncollinear translations give rise to a plane lattice and introducing a third
translation (not on the same plane) generates a space lattice. Since any line joining two lattice
points is a translation and there can be wide choice of translation, the question arises as to which
two translation should one select to describe a plane lattice. A few such combinations are shown
in figure 1.3. It is seen that they generate two dimensional units called unit cell. Combination of
t,t,ort, t leads to cells having only one lattice point per cell. These are known as primitive
unit cell. Thc combination t,, t, generates a double cell. There can be many more multiple cells. The
unit cell of a lattice can be prlmltlve or multiple. A repetition of the two dimensional unit cell by
translation in two directions generates the plane lattice. This may be extended to three dimensional
lattice that may be generated by translation of a three dimensional unit cell.
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Figure 1.2: Two different plain lattices with identical motif leading to two different patterns
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Figure 1.3: Different combinations of translation and the unit cell

The three translations are selected along the ¢
three edges of the chosen unit cell. The choice of a
unit cell for real crystal is done based on the
convenience and conventions. It can be a primitive
cell or a multiple cell. The three selected axes along
the edges of the unit cell are called the
crystallographic axes a, b and ¢ and the angles between
them o, B and y as shown in figure 1.4.

As has already been said, the early vears of
study of solids were concerned mostly with crystal o
geometry. This was followed by the study of crystal 7
symmetry. Bravais in 1848 had shown that all
structures can be generated by using only 14 types
of space lattice (14 types of unit cell).

a

Figure 1.4: A unit cell showing the edges and

These 14 types of unit cells will give rise to
) the angles

230 types of lattice structures (space group) by
performing such symmetry operations as
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(1) translation, (ii) rotation, (iii) translation + rotation and (iv) reflection. It was shown by Federov
and independently by Barlow that it is not possible to have arrangement of lattice points other
than than these 230 types that can repeat itself infinitely in three dimensions.

The 14 types of Bravais lattices are shown in figure 1.5.

S8

sC bce fcc hexagonal

Simple bcec
tetragonal orthorhombic
rhombohedral monoclinic triclinic

Figure 1.5: Fourteen types of Bravais lattice

All real crystals belong to anyone of the 230 space groups. The imaginary lattice points are
occupied by atoms or groups of atoms. Table 1.1 shows the classification and the geometric
properties of the various Bravais lattices.

Table 1.1: Classification of the fourteen Bravais lattices

System Space Lattice Condition
Cubic simple cubic a=b=c
body centered cubic o=Pp=7vy=90°

face centered cubic

Hexagonal hexagonal prism a=b#c
o =B =90%
vy = 120°
Tetragonal tetragonal prism a=b#c
tetragonal bce prism oa=pB=y=90° _J
_———————e—_e—ee—le—_—_——————_——_—.——_——_—— _——— — — —_——_——_——_——_——

(Contd.)
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Orthorhombic rectangular prism a#zb#c
be rectangular prism o=pB=y=090°
fc rectangular prism
base centered prism
Rhombohedral rhombohedron a=b=
o= =y=90°
Monoclinic parallelopiped azb=#c
be parallelopiped o= =90%
vy # 90°
Triclinic triclinic parallelopiped azb=zc
oaxP =y

1.2 CRYSTAL PLANES AND MILLER INDICES

In a real crystal, the lattice points are occupied by atoms. One can think of a very large number
of lattice planes and one set of parallel planes can be distinguished from another set by their
orientation. Miller indices are the labels used to distinguish one set of parallel planes from another.
It is a set of three numbers /1 k | that defines a set of parallel planes in a crystal.

The following procedure is generally followed to determine the Miller indices.

o

. Choose an origin;

. Obtain their reciprocals;
Eliminate fractions.

. Find out the intercept that the first such plane makes with the three crystallographic axes;

The set of numbers thus generated in relation with the axes a, b and ¢ are /1, k and |/
respectively. A set of parallel planes are labelled by a set of Ikl numbers. Different set of parallel

planes have different ikl or Miller indices. This is illustrated in figure 1.6. Here, the plane nearest

to the origin and cutting the b axis at

1
makes 3 intercept along a axis,

2b

2

Figure 1.6: (322) set of planes

— intercept along b axis and

o | =

1 1 1
— , the a axis at ’%—a and the ¢ axis at — is shown. This

2c

along c axis.

b
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We can write

b
intercept 1/3 1/2 1/2
reciprocal 3 2

Hence this plane and a set of parallel planes separated by a distance d have the Miller
indices (322).

It should be noted that a point on a paper actually represents line of points when one
considers the three dimensional lattice. Hence on the plane of paper a line of points actually
represents a plane.

The major advantage of the Miller indices is that it permits to express interplanar distance
d,,, of a set of Ikl planes in terms of lattice parameters a, b, ¢, &, B and 7.

For a cubic crystal
a

g o= 8
(h: + k> +13)

Ikl

1.3 DIFFRACTION OF X-RAYS

In 1912, von Laue first suggested that since the lattice points in a real crystal are occupied by
atoms, the crystal lattice should act as a three-dimensional diffraction grating for X-rays. This
should happen because X-rays have wavelength of the dimension of interplanar distances in a
real crystal. Shortly after this, W.L. Bragg showed that wavelength of the X-ray undergoing
diffraction by a crystal is related to the interplanar distances by the famous Bragg’s equation.

1.3.1 Bragg’s Law of Diffraction

Let there be a set of lattice planes consisting of an array of atoms as shown in figure 1.7. The
X-ray beam incident on a plane at angle 6 will be reflected from the plane such that the angle of

c c

c
A
1
1
1

(111) (101) (011)

Figure 1.7: Different sets of crystal planes in a cubic crystal
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reflection is also © and a part of the intensity will pass though the crystal undeviated from its
path. Reflection is caused by the interaction of the electromagnetic radiation with the electrons of
the atoms in the lattice. In order that the intensity of the reflection is sufficiently strong, reflected
waves tfrom the successive planes separated by d,,, should be in phase.
From figure 1.8, it is seen that the path difference of the waves from successive planes is
2d sin 6. In order that the waves travelling from successive planes are in phase the condition
nh = 2d,, sin © ...(1.2)

should be satisfied. This is Bragg’s condition of reflection and is known as Bragg's law.
Path diff. = BC + BD
nk = 2AB sin 6
=2dsin6

Figure 1.8: Diffraction of X-ray from a set of planes

1.4 RECIPROCAL LATTICE

The concept of reciprocal lattice is very useful in X-ray crystallography. It was Ewald who
developed the relation between the diffracted X-ray beams. The crystal, instead of being seen as
different sets of parallel planes, may be represented by a normal drawn perpendicular to each set
of parallel planes from a common point as origin. The length of the normal is proportional to
I/d,,. This length and direction of the normal is used to represent a set of parallel planes. If a
point is placed at the end of each such normal, an array of points is generated. Each point then
represents a set of parallel equidistant lattice planes and hence, each point is represented by a set
of Miller indices (/ikl) of the crystal. This array of points is known as the reciprocal lattice. The
reciprocal lattice vector d,,, has a direction same as the normal to the d,,, planes and its magni-
tude is 1/d,,,. We see that the arrangements of the points in the reciprocal lattice has the same
symmetry as the lattice points of the real crystal.
The concept of reciprocal lattice is particularly helpful in understanding diffraction of X-rays
by crystal planes. Let us rewrite the Bragg’'s equation in reciprocal lattice as
= _ /\_2 _ Ldy, 3
sin 0, ,, i % .5 (1:3)
Here, we have tried to relate the magnitude of the reciprocal lattice vector to diffraction
angle and the wavelength of the X-ray. In order to see the geometric consequence of this equation,
let us imagine a sphere of radius 1/A = AO as shown in figure 1.9.



