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An Introduction to Chaos in Nonequilibrium
Statistical Mechanics

This book is an introduction to the applications in nonequilibrium
statistical mechanics of chaotic dynamics, and also to the use of tech-
niques in statistical mechanics important for an understanding of the
chaotic behaviour of fluid systems.

The fundamental concepts of dynamical systems theory are reviewed
and simple examples are given. Advanced topics including SRB and
Gibbs measures, unstable periodic orbit expansions, and applications
to billiard systems, are then explained. The text emphasises the connec-
tions between transport coefficients, needed to describe macroscopic
properties of fluid flows,and quantities,such as Lyapunov exponents and
Kolmogorov—Sinai entropies, which describe the microscopie, chaotic
behaviour of the fluid. Later chapters consider the roles of the expanding
and contracting manifolds of hyperbolic dynamical systems and the
large number of particles in macroscopic systems. Exercises, detailed
references and suggestions for further reading are included.

This book will be of interest to graduate students and researchers, with
a background in statistical mechanics, working in condensed matter
physies, nonlinear science, theoretical physics, mathematics and theoreti-
cal chemistry.

JAY ROBERT DORFMAN attended the John Hopkins University, receiving
a BA degree in chemistry in 1957, and a PhD degree in physics in 1961.
Professor Dorfman then spent three years as a post-doctoral fellow at the
Rockefeller University before moving to the University of Maryland as
an Assistant Professor in the Institute for Fluid Dynamics and Applied
Mathematics (now the Institute for Physical Science and Technology)
and the Department of Physics and Astronomy. He was promoted to
the rank of Professor in 1972. During the years 1983-1992 Professor
Dorfman served as Director of the Institute for Physical Science and
Technology, the Dean of the College of Computer Mathematical and
Physical Sciences, the Vice President for Academic Affairs and Provost of
the University of Maryland at College Park. Currently he is engaged
in research on the relation between dynamical systems theory and
non-equilibrium statistical mechanics.
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Preface

v’Ha-aretz hayta tohu va’vohu...v'ruach Elohim merahefet al pnai
ha-mayim.

Now the earth was unformed and void ... and the spirit of God
hovered over the face of the waters.

Genesis, 1.2

This book began its life as a set of lecture notes based on a
series of lectures given to fourth year students at the Institute
for Theoretical Physics at the University of Utrecht during the
spring semester of 1994. The course of lectures was entitled From
Molecular Chaos to Dynamical Chaos. At the suggestion of Prof.
Matthieu Ernst, two students in the class, Lucas Neevens van
Baal and Iris Lafaille, took notes, edited them, and prepared a
IATEX manuscript that formed the basis for the lecture notes. The
notes have undergone several revisions and many more corrective
exercises to remove many errors that I inadvertently added to the
original IATEX file provided by Mr. van Baal and Ms. Lafaille. It
is due to their hard work and desire to make the notes as clear as
possible that the notes have made their reappearance as a book.

I would like to thank the students who attended the course in
Utrecht and those who have used the lecture notes at the Uni-
versity of Maryland since then. One of the original students in
Utrecht, Ramses van Zon, and some students at Maryland, Rainer
Klages, Thomas Gilbert, Debabrata Panja, and Luis Nasser, have
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xii Preface

taken the subjects discussed here as Ph.D. theses topics, which, of
course, is a pleasant outcome of any series of lectures to advanced
students. I want to thank them as well as the many other stu-
dents and colleagues who have attended my lectures for helping
me understand and clarify many of the points presented here.

I would like to thank my colleagues at the Institute for Theo-
retical Physics, University of Utrecht, for their warm hospitality,
their generous help, and their creatively critical attitude, which
was always refreshing. It is a pleasure to thank two colleagues in
particular, Matthieu Ernst and Henk van Beijeren, for all of their
help, support, and advice, and for many fruitful scientific collabo-
rations, which have continued for over thirty years and have now
evolved to collaborations on topics related to those covered in
these lectures. Much of the clarity that this book may have is
due in large part to many discussions, especially with Profs. Ernst
and van Beijeren, and also with Drs Donald Jacobs and Harmen
Bussemaker. It is a pleasure to thank Prof. Nico van Kampen for
interesting discussions on quantum chaos and on linear response
theory. I would also like to express my gratitude to Ms. Leonie
Silkens for her help on many matters during my stay in Utrecht.

My colleagues at the University of Maryland, Mischa Brin and
Garrett Stuck of the Department of Mathematics, and especially
those in the chaos group, Edward Ott, Brian Hunt, Celso Gre-
bogi, and James Yorke provided me with a first-rate education in
dynamical systems theory and chaos, and have been encouraging
of my efforts to relate their field to mine, statistical mechanics.
My colleagues in the Institute for Physical Science and Technol-
ogy, particularly Profs. Jan Sengers, Ted Kirkpatrick, Dave Thiru-
malai, and John Weeks, have been helpful indeed in welcoming
me back to research after a period in administration. Thanks are
also due to the Institute for Physical Science and Technology, the
Department of Physics, the Office of the Dean of the College of
Computer, Mathematical and Physical Sciences, and the Office of
the Vice-President for Academic Affairs at the University of Mary-
land at College Park for various forms of financial and logistical
support.

I especially want to thank Masao Yoshimura, Arnulf Latz, Rainer
Klages, Charles Ferguson, Mihir Arjunwadkar and Kenneth Sny-
der for their considerable help in getting the book in its final form,



Preface xiii

for teaching me a great deal about IATEX and computers in gen-
eral, and for their valuable scientific support. Prof. John Weeks
kindly provided Figure 2.1. I am indebted to Charles Ferguson
for the figures of the cat map in Chapter 8. Thanks are also due
to Prof. Michel Droz, Mr. Jerome Magnin, and the Department
of Physics of the Univsersity of Geneva for their kind hospital-
ity during May-June, 1998, when some parts of this book were
written.

Much of what is new in this book is due to very happy scien-
tific collaborations that I have had with Henk van Beijeren, Pierre
Gaspard, Matthieu Ernst, E. G. D. Cohen, Shuichi Tasaki, Har-
ald Posch, Rainer Klages, Arnulf Latz, Cecile Appert, Donald Ja-
cobs, Christoph Dellago, Charles Ferguson, Debabrata Panja, and
Thomas Gilbert. Prof. Predrag Cvitanovi¢ was kind enough to use
a version of this text in a course at Northwestern University, and
provided me with a number of corrections and helpful remarks. I
thank him and his students at Northwestern for their suggestions
and advice. Masao Yoshimura, Arnulf Latz, Rainer Klages, Ernest
Barreto, Jane Gaily, Kenneth Snyder, Thomas Gilbert, Mihir Ar-
junwadkar, Karol Zyczkowski, Carl Dettmann, Juergen Vollmer,
Tamas Tél, Raul Rechtman, Pierre Gaspard, Luis Nasser, and
David Urbach also read large parts of the text and made many
valuable and significant suggestions for improvement. I am very
indebted to Howard Weiss for a critical reading of the manuscript,
which led to many improvements in the book, as well as for sev-
eral important references to papers in the mathematical literature.
Critical remarks by Jean Bricmont and anonymous referees led to
a number of clarifications at various important points in the text
and I thank Prof. Bricmont, especially, for his interesting and very
stimulating thoughts on a number of matters.

There are two individuals to whom I owe a special debt of grat-
itude. Prof. Pierre Gaspard of the Université Libre de Bruxelles
has aided me enormously in my understanding of the connections
between nonequilibrium statistical mechanics and dynamical sys-
tems theory both through his writings and through our collabo-
ration on a number of interesting topics. I wish to thank Prof.
E. G. D. Cohen of the Rockefeller University who through many
years of close and fruitful collaboration, has helped shape my un-
derstanding of irreversible processes.
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The English translation of the Hebrew text from Genesis is
used with permission of the Jewish Publication Society. The He-
brew phrase, ‘tohu va’vohu’, has entered a number of languages
(English, French,...) as ‘tohubohu’, meaning ‘chaos’, ‘disorder’, or
‘confusion’.

Finally, I would like to acknowledge support from the National
Science Foundation under Grants No. PHY-93-21312 and PHY-
96-00428.

A web site has been established for this book,-at the time of
publication. This web site can be accessed through the author’s
home page at http://www.ipst.umd.edu/dorfman.

J. R. Dorfman
College Park, Maryland
December, 1998
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1
Nonequilibrium statistical mechanics

1.1 Introduction

Statistical mechanics is a very fruitful and successful combination
of (i) the basic laws of microscopic dynamics for a system of parti-
cles with (ii) the laws of large numbers. This branch of theoretical
physics attempts to describe the macroscopic properties of a large
system of particles, such as one would find in a fluid or solid, in
terms of the average properties of a large ensemble of mechanically
identical systems which satisfy the same macroscopic constraints
as the particular system of interest. The macroscopic phenomena
that concern us in this book are those which fall under the general
heading of irreversible thermodynamics, in general, or of fluid dy-
namics in particular. We shall be concerned with the second law
of thermodynamics, more specifically, with the increase of entropy
in irreversible processes. The fundamental problem is to reconcile
the apparent irreversible behavior of macroscopic systems with
the reversible, microscopic laws of mechanics which underly this
macroscopic behavior. This problem has actively engaged physi-
cists and mathematicians for well over a century.

1.2 The law of large numbers and the laws of mechanics

Many features of the solution to this problem were clear already
to the founders of the subject, Maxwell, Boltzmann, and Gibbs,
among others. The notion that equilibrium thermodynamics and
fluid dynamics have a molecular basis is one of the central sci-
entific advances of the 19th century. Of particular interest to us
here is the work of Maxwell and Boltzmann, who tried to under-
stand the laws of entropy increase in spontaneous natural pro-
cesses on the basis of the classical dynamics of many-particle sys-
tems. Boltzmann’s derivation, in 1872, of what is now known as

1



2 Nonequilibrium statistical mechanics

the Boltzmann transport equation was a major step in the pro-
cess of making the connection between molecular motions and
irreversible thermodynamics. Boltzmann considered a dilute gas
of particles interacting with short-range, central, pairwise forces,
and obtained, using what appeared to be completely mechanical
arguments, an equation for the distribution function, F(r,v,t), of
particles in a small region, dr about a point at position r, with
velocity in the range v about velocity v at time ¢. This equation,
which we will derive in the next chapter, has the interesting prop-
erty that one can define a function of time, H(t), in terms of the
distribution function, which decreases monotonically in time, and
reaches a constant value when the velocity distribution function
is the Maxwell-Boltzmann equilibrium distribution system is spa-
tially uniform. Furthermore, when evaluated for a system with
this equilibrium distribution, the H-function is exactly —S/kg,
where S is the thermodynamic entropy for an ideal gas, and kp is
Boltzmann’s constant.

Consequently, Boltzmann had almost achieved the resolution of
thermodynamics with mechanics, at least for dilute gases, by iden-
tifying this H-function with the negative of the thermodynamic
entropy.

Objections were raised to Boltzmann’s derivation of the laws of
irreversible thermodynamics, based upon the time-reversal invari-
ance of Newton’s equations of motion and upon the Poincaré re-
currence theorem. The former objection (called Loschmidt’s para-
doz) says that if there is a motion of the gas that leads to a steady
decrease of H with time, then there is certainly another allowed
state of motion of the system, found by time reversal, in which H
must increase. The second objection is a bit more subtle. Poincaré
had proved that a bounded - in space and energy — mechanical
system must typically have a recurrence property. That is, almost
every (with the exception of a set of measure zero) initial state of
an isolated, bounded, mechanical system will recur to within any
specified accuracy, in the course of time. Of course, if H decreases
over part of this motion, it must increase over some other part.
This was referred to as Zermelo’s paradoz. The fact that this re-
currence time may be much longer than the age of the universe is
no escape from the argument that Boltzmann’s derivation must
contain some non-mechanical elements.
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In fact, Boltzmann’s derivation makes use of a stochastic argu-
ment called the assumption of molecular chaos, which allows an
approximate calculation of the rates at which collisions are taking
place in the gas. Nevertheless, as we discuss in later chapters, the
derivation of the Boltzmann equation, the paradoxes surrounding
it, and the modern ideas that have followed from it, are an essen-
tial part of nonequilibrium statistical mechanics, not only because
of the deep and interesting conceptual problems involved, but also
because the results of the Boltzmann equation are of great practi-
cal value in many areas of physics and engineering, and they need
a firm foundation.

The recognition that the law of entropy increase must be some-
thing more than a consequence of Newton’s laws led to the intro-
duction of probabilistic ideas into this branch of physics. That is,
the Boltzmann equation predicts things that are verified in labo-
ratory experiments, despite the fact that this equation cannot be
strictly correct; at least, not according to the laws of mechanics.
One might say that the Boltzmann equation is ‘probably’ cor-
rect, rather than absolutely correct. It must describe a typical
laboratory situation over times which are much longer than the
time-scales of laboratory measurements. The H-theorem appears
to hold for the typical behavior of a dilute gas, so the time-reversed
motion of this gas, so important to Loschmidt, must correspond to
a rare, very improbable, state of the gas. Moreover, the Poincaré
recurrence time must be shown to be so large, compared to usual
time-scales, that one will very likely never see such a recurrence.
Since the reversal and recurrence objections are based entirely on
mechanical principles, the introduction of probability arguments
should be based upon the fact that macroscopic systems consist
of large numbers of particles, and this fact should be coupled with
a study of the dynamics of systems of large numbers of particles
to provide a complete picture of irreversible processes.

The basic approach to the statistical mechanics of irreversible
processes consists of three central themes:

1. One examines the average behavior of ensembles of mechani-
cally identical systems. To do this, in classical mechanics at least,
one constructs a phase-space, denoted I'-space, with one coor-
dinate axis for each canonical coordinate and one axis for each



