

Donald B. Neuman

EXPERIENCING ELEMENTARY SCIENCE

DONALD B. NEUMAN

University of Wisconsin-Milwaukee

Wadsworth Publishing Company
Belmont, California / A Division of Wadsworth, Inc.

Education Editor: Suzanna Brabant

Development Editors: John Bergez, Peter Schwarz, Judith McKibbon

Senior Editorial Assistant: Dana Lipsky Production: The Book Company

Designer: Wendy Calmenson Print Buyer: Karen Hunt

Copy Editor: Bob Klingensmith

Cover and Interior Photos: Alan Magayne-Roshak Cover Background Photo: Earth Scenes/John Lemker

Technical Illustrator: Lotus Art Cover: Wendy Calmenson

Signing Representative: Eileen Murphy

Compositor: Thompson Type Printer: R. R. Donnelley & Sons

© 1993 by Wadsworth, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means, without the prior written permission of the publisher, Wadsworth Publishing Company, Belmont, California 94002.

1 2 3 4 5 6 7 8 9 10-97 96 95 94 93

Library of Congress Cataloging-in-Publication Data

Neuman, Donald Bernard.

Experiencing elementary science/Donald Bernard Neuman.

p. cm.

Includes bibliographical references and index.

ISBN 0-534-18822-2

1. Science — Study and teaching (Elementary) — United States. 2. Experiential learning — United States. 3. Thought and thinking — Study and teaching (Elementary) — United States. I. Title.

LB1585.3.N48 1993

372.3'5'044 - dc20

92-27091

To my parents, who have given my life direction, and my wife, children, and grandchildren, who give it meaning

Preface

Before you begin reading this book, I'd like to explain several things: the meaning of the title; some of my assumptions about children, educators, and education; and the organization of sections and chapters. Knowing about these issues in advance will make the book more comprehensible and useful for you.

The title. While writing this book, I toyed with several titles, finally choosing *Experiencing Elementary Science*.

The key word in this title is *experiencing*. For me, proper experiences for children are firsthand experiences—hands-on and thought-provoking, not vicarious. They are experiences that help children to understand science concepts and principles, become more effective investigators, learn to think creatively and critically, and develop a realistically positive sense of themselves and the world around them.

Proper experiences drive an effective elementary science program. Discussions about and descriptions of proper science experiences are the "heart and soul" of this book.

Children, educators, and education. In my mind there is a huge difference between *teaching science* and *helping children learn science*. In the former a teacher, using a textbook, fills children's heads with science information. In the latter children actively seek to acquire science knowledge and skills, and teachers organize and implement experiences that encourage and facilitate the children's search.

Why and how to get children actively and physically involved in their science learning are given major emphasis in this book. Great stress is placed on how you, as a teacher, can make science learning something that children do, not something that is done to them.

Another idea about learning also influences the pedagogical principles espoused in this book, that learning to learn can be pleasurable. Science experiences can be and are highly pleasurable. True, they may be intellectually challenging—but children can find pleasure in meeting "doable" challenges. Science activities and program organizational patterns that help make those activities meaningful

Preface

and pleasurable to children are described throughout this book; so, too, are educational theories that undergird the activities and patterns.

Organization of the book. This book is organized to help you design effective science programs and provide meaningful instructional experiences for children.

Section 1 provides a frame of reference about elementary science. Chapter 1 gives a definition of science, discusses the role of science today, and offers reasons why you should regularly provide proper science experiences in your classroom. Chapter 2 focuses on critical and creative thinking — why thinking is so important to children and how science experiences can contribute to the development and refinement of children's thinking skills.

Section 2 touches on theory and practices in elementary science. Chapter 3 describes how and why children should experience the inquiry skills of science. Chapter 4 explains how children can effectively experience science content so they *understand* it, which is very different from memorizing and reciting a lot of information. Chapter 5 is devoted to instructional practices that help children experience science in personally meaningful ways.

Section 3 addresses how to organize and implement an experience-centered elementary science program. The focus of Chapter 6 is on how a program might be organized. Chapter 7 describes how science units can be developed, and how science activities can be created to provide children with appropriate science experiences. Chapter 8 describes a number of commercially available, experience-centered science programs. Chapter 9 outlines teacher skills that contribute to the success of an experience-centered program.

Section 4 discusses several essential and basic issues of elementary science. Chapter 10 describes science experiences for children with special needs, and Chapter 11 deals with why and how to integrate science with other elementary school disciplines, such as reading and social studies. Some practical aspects of science programming, such as organizing physical facilities, finding equipment and supplies, and developing a cadre of classroom assistants, are the subjects of Chapter 12.

Section 5 presents two prototypical units that you might adopt as is or use as sources of ideas for developing your own activities. Chapter 13 offers practical ideas for providing instruction in the inquiry processes, and Chapter 14 is a model unit on the study of sound.

As you read the book, notice that I tried to minimize do's and don'ts for you to memorize. Instead, I included numerous stories, vignettes, and descriptions of classroom experiences. Most of these are based on personal experiences. A few of them reached me secondhand from classroom colleagues and students with whom I've worked. They are intended to show you how science experiences can be made meaningful and challenging for children.

By stressing descriptions of children's experiences rather than lists of do's and dont's, I hope I have made this book readable, understandable, useful, and enjoyable.

Acknowledgments

I am deeply indebted to the many teachers who shared their classrooms and their experiences with me. Most of the vignettes included in this book are the result of those interactions. Special thanks to principals Albin Kaczmarek of Golda Meir School and Robert Kreilkamp of Oliver Wendell Holmes School for permitting the photographing of children in their schools. I also owe a debt of gratitude to teachers, Irmgard Hagen, Andy Engel, Mark Horowitz, Ellen Crozier, Nancy Hill, Deanna Krieg, and the children in their classes who proved to be very attractive subjects for a gifted photographer, Alan Magayne-Roshak.

I appreciate the comments and suggestions of the many instructors who reviewed drafts of the manuscript, including Roy Lee Foley, University of Houston–Victoria; Leonard J. Garigliano, Salisbury State University; Richard W. Griffiths, California State University–San Bernardino; Paul A. Joslin, Drake University; Henry Kepner, University of Wisconsin–Milwaukee; Robert E. Kilburn, Boston University; Abbe Krissman, Greenfield (Wisconsin) Public Schools; Carole A. Kubota, University of Washington; Patricia McClurg, University of Wyoming; Milton Payne, Stephen F. Austin State University; Mary Jett Simpson, University of Wisconsin–Milwaukee; John Staver, Kansas State University; Dennis Sunal, University of Alabama; Verne A. Troxel, Miami University; Rita K. Voltmer, Miami University; and Dorise Watson, University of Northern Colorado.

I am especially indebted to Cathy Mae Nelson who typed and retyped the manuscript. I will always be grateful for her skills and patience.

Contents

Section 1 A Frame of Reference About Elementary Science

Chapter 1 Introduction and Overview 5

A Vignette 6

A Definition of Science 9

Implications for Teachers 9 Scientific Knowledge 10 Science Skills 12 Scientific Attitudes 12

Creating a Scientifically Literate Society 17

A Scientifically Literate Person 18 Why We Should Teach Science in the Elementary School 19

Chapter 2 Thinking - A Primary Goal of Schooling 26

The Concern About Thinking 27

Critical Thinking 28

Practical Characteristics of Critical Thinking 28 Theoretical Characteristics of Critical Thinking 29 Teaching Children to Be Critical Thinkers 29 Using Critical Thinking Skills to Solve Problems 32 Science, Critical Thinking, and Analytic Problem Solving 35

Creative Thinking 37

What Is Creative Thinking Behavior? 37 What Is Creating Thinking? 41

2

Encouraging Creative Thinking in the Classroom 43 Using Creative Thinking to Solve Problems 44 Science, Creativity, and Problem Solving 46

Section 2 Theory and Practices

52

Chapter 3 Experiencing the Inquiry Skills of Science 55

Acquiring Skills 56

Acquiring Science Inquiry Skills 57

Defining the Basic Inquiry Processes 58

Hierarchical Nature of the Basic Inquiry Processes 72

Understanding the Experimental Inquiry Processes 72

Specific Skills 75

Why Emphasize the Inquiry Process? 82

Chapter 4 Helping Children Experience the Content of Science 86

Learning Theories 87

The Behaviorist Approach 87

The Cognitive Approach 88

Learning Science Content 94

Factual Learning 94

Concept Attainment: An Overview of the General Theory 97

Applications of the Concept Attainment Model 99

Verbal Knowledge Acquisition 109

Inquiry Learning 114

Preparing Yourself to Teach Science Content 120

Chapter 5 Variety: A Key Ingredient in Experiencing Elementary Science 127

Achieving a Sense of Success in School Activities 128

The Influence of Self-Concept on School Success 129

Implications for Science Instruction 132

Variety in School Experiences – A Research-based Phenomenon 132

Human Variability 132

Dealing with Variability in the Classroom 137

The Instructional Strategies Model 138

Classroom Organization 139

Constraints 143

Contents xi

Instructional Strategies 146
Practical Application of the Instructional Strategy Model 172
A Final Note 176

Section 3 An Experience-Centered Elementary Science Program

180

Chapter 6 Organizing Children's Science Experiences: The Overall Program 183

Underlying Assumptions about Elementary Science Programming 184

Organizing the Content Portion of a Science Program 186

Creating the Science Program's Scope and Sequence 187

Alternatives for Creating the Scope and Sequence 188

The Program Matrix 194

Inquiry Skills 194

Unifying Themes 195

Using the Matrix to Build a Coherent Scope and Sequence 197

Building a New Program from Scratch 197

Adapting Other Science Programs to the Matrix Model 202

Chapter 7 Organizing Children's Science Experiences: Units and Lessons 208

Maxi-Units 209

What Is a Maxi-Unit? 209

A Guide for Developing Maxi-Units 209

Planning Day-to-Day Lessons 210

Mini-Units 219

Planning and Carrying out Mini-Units 220

Appropriate Mini-Unit Topics 221

Incidental Science Lessons 222

Evaluating a Science Program 223

Getting Started: A Flowchart 225

Tips on Lesson Planning and Teaching 225

Chapter 8 Examples of Hands-On Science Programs 231

The "Alphabet Soup" Era 232

Science - A Process Approach 233

The Elementary Science Study 235

The Science Curriculum Improvement Study 237 Positive and Negative Aspects of SAPA, ESS, and SCIS 240

The New Generation of Hands-on Programs 241

Life Lab Science Program 241
Science for Life and Living 245
Science and Technology for Children 246
Insights 248
Full Option Science System 250

Chapter 9 Teachers' Roles in Making Elementary Science Come Alive 254

Skills of Effective Science Teachers 255

Encouraging Investigation and Exploration 255
Encouraging Critical and Creative Thinking Through Questioning 258
Managing a Classroom Skillfully 263
Evaluating Children in Science 271

Section 4 The Nitty-Gritty

280

Chapter 10 Science Experiences for Children with Special Needs 283

Young Girls and Science 284

Sociocultural Pressure 284

Teacher Behaviors and Attitudes 284

What Can We Do? 285

Children with Special Physical Needs 286

What Can We Do? 287

Children Who Underachieve 289

Characteristic Behaviors of Children Who Underachieve 289

Causes of Underachievement 290

What Can We Do? 291

Gifted and Talented Children 291

Characteristics of Gifted Children 292

Identifying Scientifically Gifted and Talented Children 293

What Can We Do? 294

A Word of Caution 296

Children and Their Cultures 297

Concerns in a Culturally Diverse Classroom 297

What Can We Do? 297

Contents xiii

Children from Impoverished Backgrounds 298 Characteristics of Children from Impoverished Families 299 What Can We Do? 299

Chapter 11 Integrating Science with Other School Disciplines 302

Integration of Science and Mathematics 303

Integration of Science and Reading 307

Reading Helps Children Understand Science Phenomena 307

Science Helps Children Become Better Readers 309

Activities for Integrating Science and Reading 310

Integration of Science and Poetry 312

Integration of Science and Language/Writing 313

Integration of Science and Social Studies 315

Science and the Arts 317

Science and Dramatics 320

Integration of Science and Computers 320

Enhancing a Science Program Through Information Acquisition 321

Information Management Strategies 323

Computers and Classroom Management Tasks 326

Recent Innovations in Computer Technology 326

Chapter 12 Practical Considerations in the Classroom 332

Designing Physical Facilities 332

Creating Interior Spaces 333

Outdoor Space 335

Sources of Science Materials and Equipment 338

Traditional Sources 338

Alternative Sources 340

Classroom Volunteer System 342

Section 5 Examples of Activities

346

Chapter 13 Inquiry Process Activities 349

Inquiry Process Activities 350

Observations 350

Inferring 354

Classification 360

Communication 362

Quantification 365 Prediction 370 Controlled Experimentation 374

Chapter 14 A Science Unit on Sound 379

How the Unit Was Created 379
Using This Unit 380
Rationale 380
Overall Objectives 381
Lessons 381

Appendix A Safety Tips 407

Appendix B Resources for Teachers 410

References 417 Index 425

EXPERIENCING ELEMENTARY SCIENCE

Section 1

A Frame of
Reference About
Elementary Science

To be able to provide proper science instruction for elementary school children, it is important for you to develop a set of personal beliefs about science and science education (which can serve as the basis for making educational decisions).

You should know the fundamentals of science as an area of meaningful intellectual pursuit; that is, what science is all about. Therefore, as you read and reflect on Chapter 1, ask yourself the following questions:

- What is science? How does the definition affect classroom practices?
- How can I use science to provide more meaningful educational experiences for children?
- Why should I teach science?
- Why are firsthand experiences in science so important for children?

Children become *really* educated only when they develop the personal skills, strategies, and inclinations to think—both analytically (critical thinking) and creatively. Children tend to respond to the expectations of their teachers. If, as a teacher, you reinforce rote memorization, your pupils will concentrate their efforts on that skill. If the emphasis in your classroom is on the quality of their thinking, they will try to develop and use the skills and strategies of higher level thinking.

Higher level thinking is the focus of Chapter 2. As you read the second chapter, think about these questions.

- What are the characteristics of critical and creative thinkers?
- Why are critical and creative thinking abilities so important to children?
- What kinds of science experiences are likely to enhance the quality of children's analytic and creative thinking skills?

