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See what a lovely shell,
Small and pure as a pearl,
Lying close to my foot,
Frail, but a work divine,
Made so fairily well
With delicate spire and whorl,
How exquisitely minute,

A miracle of design!
What is it? a learned man
Could give it a clumsy name.
Let him name it who can;
The beauty will be the same.

— Alfred, Lord Tennyson, Maud 11, II.



Preface

A substantial part of the material covered in these notes formed the content
of a course of lectures given during the Spring of 1985 in the Mathematics
Institute of the University of Warwick, England. My aim was to introduce
the aspiring graduate student to a beautiful and central part of mathe-
matics, the representation theory of semisimple groups. This is of course
a vast and active subject, bringing together at a fairly deep level
algebra, geometry, analysis, and arithmetic. This is one of the reasons why
it is difficult to get into, at least for the young student. I therefore made
an attempt to keep the requirements minimal, and introduced the major
themes of the subject by first working them out in the case of SL(2, R).
This approach has no claim to novelty: it has been done before, and there
is the well-known book of S. Lang dealing only with SL(2,R). I have,
however, discussed a number of topics not treated by Lang, such as the
Schwartz space, invariant eigendistributions, wave packets, and so on; in
addition, I have included, wherever possible, indications of how these ideas
may generalized to the context of a general semisimple Lie group.

The organization of the book is not always linear because I wanted to
adhere closely to the lectures and preserve their freeflowing nature. As a
result, the reader will often find references to matters that are not defined
or are quite advanced, especially in Chapters 1-2. This should not
discourage him (or her); my advice to the reader is to ignore it and
proceed ahead, and come back to the difficult points later. Chapters 4—-8
are essentially linear and can be worked through by a graduate student
(late first year or early second year in an American university). I have
included appendices on Functional Analysis and Lie theory that offer the
reader some basic definitions, explanations of some concepts, and some
historical perspective.

It is a great pleasure for me to express my gratitude to the Mathematics
Institute of the University of Warwick and the Science and Engineering
Research Council of the United Kingdom for inviting me to Warwick, and
to the staff and faculty of the Institute for their wonderful hospitality. To
thank Klaus and Annelise Schmidt adequately for what they did for my wife
and me is impossible; it was only through their kindness and generosity that
this visit become so memorable for us. Finally I want to thank the
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Cambridge University Press and their editor Dr David Tranah for being
really patient while I took my time preparing the final version of this

manuscript.

Pacific Palisades, October 1986 V.S. Varadarajan
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1

Introduction

1.1 Aim

The aim of this book is to introduce advanced undergraduates or
beginning graduate students to the subject of harmonic analysis on
semisimple Lie groups. This involves doing a certain amount of represent-
ation theory for these groups, either implicitly or explicitly, because
harmonic analysis is concerned mainly with expanding arbitrary functions
(and generalized functions) on a group as a series or integral of functions
which occur as matrix elements of irreducible representations of the group.
Nevertheless this is not a book on representation theory. As long as the
group is compact, the harmonic analysis point of view is not very
prominent; but for noncompact groups the behaviour of the matrix
elements at infinity becomes critical, and the analysis becomes decisive.
Thus, although representation theory and harmonic analysis have a lot in
common, the two subjects are not quite the same; and the differences will
become clear to the reader when both themes have been developed to a
certain extent. In this introductory chapter I shall discuss briefly a number
of sources of motivation for studying representations and harmonic
analysis, whose diversity and wide-ranging nature show that our subject is
much more central than it seems at first sight.

1.2 Some definitions

A representation of a group G is a homomorphism of G into the general
linear group GL(V) of a complex finite-dimensional vector space V; the
representation is said to be in V. If 0 and V are the only linear subspaces of V
stable under the representation x (i.e., left invariant by n(g) for all ge G), then
7 is said to be irreducible. Representations r;in V; (j = 1, 2) are equivalent if
there is a linear isomorphism T(V, — V,) such that n,(g) = Tn,(g)T ~* for
all geG. If n; are representations of G on V; (j = 1,...,m) their direct sum
n=n,®- - @®n, and tensor product 7' =n; ® --- ® m,, are the represent-
ations defined respectively in V=V, ®---®V,, and V' =V,®---®YV,, by

n(g) =m,(9)® --- D 7,(9)
G
7(g) = 11(6)® ---®nm(g)} 9=6)

The dual (or contragradient) of a representation 7 in V is the representation
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m* in the dual V* of V defined by
(v, 7*(g*) = (g™ Jv,v*) (veV,v*eV*,geG)

Actually, the category of finite-dimensional representations, with @, ®, *
defined as above, is adequate only for problems involving finite groups. For
infinite groups, it is necessary to impose additional restrictions such as
continuity, rationality, and so on, as well as to consider infinite-dimensional
representations. We begin by looking at some of the most common
examples.

Finite groups. As we remarked above, the category of representations in
finite-dimensional vector spaces is the natural one to work with, but the
restriction to complex vector spaces is not reasonable. Most applications, in
physics and chemistry, for example, deal with complex representations; but
for a general theory the underlying fields should be arbitrary [S1].

Algebraic groups. In concrete terms these are groups of matrices defined by
polynomial conditions on their entries. Typical examples are the uni-
modular group, i.e., the group of matrices of determinant 1, the orthogonal
group, the symplectic group, and so on. For such a group defined over (i.e.,
with entries from) an algebraically closed field k, it is natural to work only
with finite-dimensional representations 7 which are rational; here rational
means the entries of 7(g) relative to a basis of V are polynomial functions of
the entries of g and det(g) .

Topological groups. Impulses from functional analysis and quantum
physics were very much responsible for a systematic study of represent-
ations in infinite-dimensional spaces. The groups considered are topolog-
ical and the vector spaces usually complete and locally convex. If G is a
topological group and V is a complete locally convex space, the homomor-
phism 7 of G into the group of invertible automorphisms of V is a
representation if the map (g,v) n(g)(v) of G x V into V is continuous.
Important special cases are when V is a Banach space and G is locally
compact. If V is a Hilbert space and each n(g) is unitary, n is called a unitary
representation. For a general r, irreducibility now means that 0 and V are
the only closed linear subspaces stable under 7; equivalence of #, and =, is
defined as before, but with T required now to be a topological linear
isomorphism; if 7, and =, are unitary, and T is unitary, 7, and 7, are said to
be unitary equivalent. The set of equivalence classes of irreducible unitary
representations of G is written G and is called the unitary dual of G. One can
define infinite (orthogonal) direct sums in the category of unitary represent-
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ations. The definition of tensor products for infinite-dimensional represent-
ations is somewhat technically involved since tensor product is a techni-
cally complicated notion for topological vector spaces; we shall not make
any serious use of this.

1.3 Classical invariant theory

The geometric invariant theory of classical geometers was one of the first
examples of an important context where representation theory entered in a
nontrivial way. Here G=SL(n+ 1,C) and one starts with a rational
representation of the algebraic group G in a complex vector space V. The
action of G on V gives rise to an action on the projective space P(V) of V.
The problem of invariant theory is that of describing the orbit space
G\P(V)[MF]. This leads almost immediately to the study of the action of G
on the rings of functions on P(V). Let R be the graded ring of polynomials
on V, and R = R® be the graded subring of G-invariant polynomials. The
first step in the description of G\[P(V) is the study of the following question:

Is R finitely generated? (%)

Hilbert proved, at the beginning of his epoch-making work on invariant
theory, that for G = SL(n + 1, C) the answer to (*) is affirmative. This was
eventually extended to all complex semisimple groups G by Hermann Weyl
who obtained it as a consequence of his famous theorem that all rational
representations of any complex semisimple group are completely reducible,
i.e., direct sums of irreducible representations. Weyl’s theorem is one of the
deepest and most important in the finite-dimensional representation theory
of semisimple groups, and we shall discuss it briefly in the next chapter.

When the questions of geometric invariant theory were examined by
Mumford in the 1960s Chevalley had already developed the theory of
semisimple algebraic groups over any algebraically closed field k; and
Mumford’s investigations led naturally to the question of finite generation
of R = RY where R is the graded ring of polynomials on a vector space V on
which we have a rational representation of the algebraic semisimple group
G. Unfortunately Weyl’s method fails when char (k) > 0; representations of
G are not in general completely reducible when k has positive characteristic.
Nevertheless Mumford conjectured that all rational representations of the
semisimple group G over an arbitrary algebraically closed field k possess
the following property (M):

if v # 0 is a vector in the space V of the given representation and
v is invariant under G, there is a nonzero homogeneous
polynomial f on V invariant under G such that f(v) #0.

The property (M) is equivalent to complete irreducibility when char (k) = 0;
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its validity for general k implies R is finitely generated. Mumford’s
conjecture was proved by Haboush in 1975 [Hb]. These results have been
the beginning of new progress in representation theory and geometric
invariant theory [MF]. For the classical theory there are of course many
references; in addition to Weyl’s great classic [W1] the reader may consult
Schur’s lectures [Sc].

1.4 Quantum mechanics and unitary representations

We now turn to a completely different source of problems in which unitary
representations appear prominently. The group G is now the symmetry
group of a quantum-mechanical system and one is interested in a
description of the system that is covariant under G. Now, any quantum-
mechanical description requires the introduction of a complex Hilbert
space #; the physical interpretation consists in identifying the ortho-
complemented lattice .#(#°) of the closed linear subspaces of s# with
the logic of experimentally verifiable propositions of the system [V1]. The
requirement of covariance means there is a homomorphism o of G into the
group of automorphisms of #(s#). Now it can be proved that any
automorphism ¢ of .Z(5) is induced in the obvious way by a unitary or
antiunitary operator, determined uniquely up to a multiplicative constant
of absolute value 1. Under mild assumptions on G and ¢ it can be shown
that ¢ is induced by a projective unitary representation of G, i.e. a unitary
representation of an extension of G by the group T complex numbers of
absolute value 1. This representation is obviously an important invariant of
the system. For suitable G one can show that ¢ is induced by a unitary
representation of its simply connected covering group G. This is the case
when G is the group of automorphisms of Euclidean or Minkowskian affine
space-time (however, this is not the case for the group of automorphisms of
Galilean space-time).

If G is the group of automorphisms of an affine space with the structure of
Minkowskian space-time, G can be written as a semidirect product A x H
where A is the four-dimensional group of space-time translations, H =
SL(2,C), and H acts linearly on A via the Lorentz transformations. In any
description of a quantum-mechanical system consistent with special
relativity there will thus appear a unitary representation of G. For instance,
if the system is that of a free elementary particle, it is natural to expect this
representation to be irreducible, and to expect further that it will tell us
everything about this free particle. Thus the free relativistic elementary
particles are in one-one correspondence with a certain subset of G. Now
there is a general method, due to Mackey, for determining the irreducible
unitary representations of such (and even more general) locally compact
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semidirect products. This method, applied in the present situation, leads in
a simple and natural manner to the classification of the particles in terms of
their mass and spin [V1] [Mal].

It is not always the case that the symmetry groups are locally compact.
The gauge groups occurring in the theory of gauge fields are infinite-
dimensional, and the representation theory of these and more general
groups is quite active now, although not yet in any definitive state [K] [PS].

1.5 Classical Fourier analysis. Plancherel and Poisson formulae

The starting point of Fourier analysis is the idea that a more or less
arbitrary function can be expanded as a ‘linear combination’ of the
exponentials. The basic objective of the theory is to define the Fourier
transform; the transform of a function (or a generalized function) shows how
it is made up of its harmonic constituents. We shall now explain briefly the
point of view of the theory of unitary representations that allows us to
understand and generalize these classical themes.

Fourier series deal with functions on the torus T" with coordinates
6=(0,,...,0,). We introduce the Hilbert space L*T")=L*T"df),
d6=db,---db,, [d6=1. For ¢eT" we define the linear operator A(¢)
on [X(T") by

(AP N)O0)=f(—¢ +0)
The A(¢) are unitary, and it is easy to show that A(¢ — A(¢)) is a unitary
representation of T", the so-called regular representation of T". The
irreducible unitary representations of T" are precisely all the characters
Am: 0 —exp 2ni(m, 60, + --- + m,0,) (m=(my,...,m,)eZ")
The functions y,, are in L*(T"); the one-dimensional subspaces C-y,, are

stable under 4, and the restriction of 4 to C-y _,, is equivalent to the one-
dimensional representation y,,. The orthogonal direct sum decomposition

(T = DC x-m

shows that A is equivalent to the infinite (orthogonal) direct sum of the yx,,
(meZ™), each taken only once. We shall now see that the Fourier transform
operator leads to the explicit ‘diagonalization’ of 4. For any f e L*(T") define
its Fourier transform [ = % f by

Jmy=(fix-m) (meZ"
where (-, -) is the scalar product. Then f is a function on Z". If we equip Z"
with the counting measure and introduce the Hilbert space L*(Z"), then
fel*Z") and
Fiff
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is a unitary isomorphism of L*(T") with LX(Z"):

IfIl= 17l

which is the usual Parseval relation. The inverse operator # ~! is given by
=Y fmx_n

the series converging in L*(T"). If we now use Z to carry the representation
A to a representation u of T" in LA(Z"), u= F°ioF ~!, then

1) f(m) = y1u(®)f(m) ($T")
This formula shows that in the standard basis of L*(Z") all the operators

w(¢) are diagonal.
If f is smooth, f(m) tends to 0 very rapidly when |m|— oo; the series

f=Y fmy_n

then converges very nicely: we have, for it as well as for all the series
obtained by formal differentiation, uniform convergence. In particular,

fO =Y f(m) (feC>(T") (P)

We shall refer to this as the Plancherel formula.
For R" the theory is more delicate. The characters of R" are the functions

X (Xpy.o0,x) > expi(tyx, + - +t,x,) (teR")
The regular representation of R" is defined as before; it acts on L*(R") by

(N =f(—y+x)

Proceeding as before we define the Fourier transform of f by

f(t)=f fr(x)dx  (teR") (FT)
4

Then )
AN O = xS (y,teR") M)

so that the operators A( y) become multiplication operators simultaneously,
and thus are ‘diagonalized’. However, the g, are of absolute value 1 and so
do not lie in the Hilbert space, so that the definition of the Fourier
transform in (FT) is not strictly valid for all f in I?(R"). The traditional way
to overcome this difficulty is to use the definition (FT) initially for f suitably
restricted, say for feL!(R")n L3(R"); the key step is then to prove that on
this restricted domain the map f - f is essentially unitary, and then to
complete its definition to all of L*(R") by continuity, noting that
LY(R") N I*(R" is dense in L*(R"). The restricted unitarity is proved in the
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form

f ) dx =(2n)‘"fnlf(t)l2dt (Py)

It then turns out that the Fourier transform maps I*(R") onto I*(R") so that
it is a unitary isomorphism:

F:[*(R",dx) = [*(R",(2n) " "dt)
The relations (M) are now valid rigorously and show that the represent-
ation y=F oA ! acts by multiplication operators. The formula (P,),
valid for all feI*R"), is the Plancherel formula.

The ‘diagonalization’ of 4 effected by & is the classic example of a
‘continuous decomposition’. Let us introduce an equivalence relation in the
o-algebra of Borel subsets of R" by defining E ~ F to mean (E\F)U(F\E)
has measure zero. If Z is the set of equivalence classes, £ is a g-algebra also;
but unlike the o-algebra of Borel sets % has no atoms. Further, Lebesgue
measure becomes a measure on # with the property that each nonzero
element has measure strictly greater than zero. For any Borel set E let

S(E)={f| fe[XR",dx)}, f =0 outside E}

It is then easy to show using (M) that S(E) is a closed A-stable subspace of
L*(R", dx). Of course S(E) depends only on the equivalence class of E and so
we have a map S(e S(e)) from the g-algebra 4 to the orthocomplemented
lattice A of the A-stable closed linear subspaces of L*(R" dx). It is not
difficult to show at this stage that S is an isomorphism:

S:B=A

The most elegant way to prove all of these assertions is by using the
Schwartz space; this method will also bring out the duality explicitly, and
will have the additional advantage of focussing on the differential aspects of
the theory. The Schwartz space of R” is the space # of all C® functions f on
R" such that for any integers m>0, a,,...,a, >0,

((0/0x,)** +++(9/0x,Y" f)(x) = O((1 + x} + -+ + x2)™™)

when x} + --- + x2 - oo. If we introduce the seminorms
Ham(f)=sup [(D*f)(X)|(1 + xF + - + x7)"

(D*=(0/0x,)** ---(0/0x,)™"), we can view & as a topological vector space
also. Itis easy to show that & is complete (so that & is a Fréchet space). The
differential operators D* act as continuous linear operators on %. Also, if we
write, for any smooth function g, M, for the operator of multiplication by g,
then, under suitable assumptions on g, M, will be a continuous linear
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operator on . For instance this is true if g is a polynomial. More generally,
if g is of moderate growth in the sense that for any « there are an integer
m(a) >0 and a constant C(x) > 0 such that

[(D*g)(x)| < C)(L + x§ + -+ + x7)™@
for all xeR", then M (f =>gf) is a well-defined and continuous operator
of &.

The rapid decay of the elements of & at infinity means that & < L}(R")
and shows at once that the Fourier transform is defined by (FT) for all f € %;
moreover, f will be a smooth function of t, and we have the formula

(—10/0t,)" - (—i0/0t,n f = (M --- M )~
(x; is the coordinate function (x, ..., x,) x;). Furthermore, replacing f by
its derivatives and integrating by parts we find the dual formula
((10/0x )" -+ (18/0x," /)~ = M5} - M [
The estimate
1g0)I<ligly (9€%)

in conjunction with the above formula now shows that fe.% and that
Fff
is a continuous linear map of & into &. The basic theorem may now be

formulated as the assertion that % is a topological linear isomorphism of &
with itself, and that & ~! is given by the inversion formula

(F g =02m)~" f g(O)xlx)de (INV)
@

If we take x =0 and g = f in (INV) we get the Plancherel formula in the
form

1) =(2n)_"J nf(t)dt (fe?) (P2)

To get the earlier version (P,) it suffices to take f =gx*g§ where §(x)=
g(— x), and = is convolution, defined by

(hyxhy)(x) = f (Phy(=y+x)dy  (xeR)

R

for hy,h,e%¥; then

f=10P.10)= j glof? dx,

R
and so (P,) follows from (P,).
The Plancherel formula (P,) has an interpretation from the standpoint of

Schwartz’s theory of distribution [Sch] which is important for us. Let us



