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Preface

Group theory was discovered by Evariste Galois in the 19th century
for the case of finite dimensional symmetric group. It has been suc-
cessfully generalized subsequently for the infinite dimensional case
(i.e. Lie group and Lie algebra) by Sophus Lie. Before the advent
of quantum mechanics in the early 20th century, group theory was
thought by many physicists to be unimportant in the study of physics.
It is indeed of some interest to note the following anecdote narrated
by Freeman Dyson (as quoted in Mathematical Apocrypha, p 21, by
S. A. Kranz), “In 1910, the mathematician Oswald Veblen (1880-
1960) - a founding member of the Institute for Advanced Study - and
the physicist James Jean (1877-1946) were discussing the reform of
the mathematics curriculum at Princeton University. Jeans argued
that they ‘may as well cut out group theory,” for it ‘would never be of
any use to physics’.” The real fundamental change in thinking truly
occurred with the development of quantum mechanics. It was soon
realized that a deep knowledge of group theory and Lie algebra in the
study of of angular momentum algebra is crucial for real understand-
ing of quantum mechanical atomic and nuclear spectral problems. At
present, group theory permeates problems in practically every branch
of modern physics. Especially in the study of Yang-Mills gauge theory
and string theory the use of group theory is essential. For example, we
note that the largest exceptional Lie algebra FEg appears in heterotic
string theory and also in some one-dimensional Ising model in statis-
tical mechanics, some of whose predictions have been experimentally
verified recently.

Our goal in this monograph is to acquaint (mostly) graduate
students of physics with various aspects of modern Lie group and
Lie algebra. With this in view, we have kept the presentation of
the material in this book at a pedagogical level avoiding unnecessary
mathematical rigor. Furthermore, the groups which we will discuss
in this book will be mostly Lie groups which are infinite dimensional.
We will discuss finite groups only to the extent that they will be nec-

vil
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essary for the development of our discussions. The interested readers
on this topic are advised to consult many excellent text books on
the subject. We have not tried to be exhaustive in the references.
Rather, we have given only a few references to books (at the end of
each chapter) that will be easier to read for a student with a physics
background. We assume that the readers are familiar with the mate-
rial of at least a two semester graduate course on quantum mechanics
as well as with the basics of linear algebra theory.

We would like to thank Dr. Brenno Ferraz de Oliveira (Braz-
ingd) for drawing all the Young tableau diagrams in chapter 5.

A. Das and S. Okubo
Rochester
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CHAPTER 1

Introduction to groups

In this chapter, we introduce the concept of a group and present
in some detail various examples of commonly used groups in physics.
This is helpful in establishing the terminology as well as the notations
commonly used in the study of groups which will also be useful in
further development of various ideas associated with groups.

1.1 Definition of a group
Let us start with the formal definition of a group G as follows:

(G1): For any two elements a and b in a group, a product is defined
in G satisfying

ab=ceG, VYa,beqG. (1.1)

(G2): The group product is associative so that

(ab)e = a(be)(= abe), Va,b,c € G. (1.2)

(G3): The group has a unique identity (unit) element e € G such
that

ea =ae=a, VYace€QG. (1.3)
This implies that

ee =e € G. (1.4)

(G4): Any element a € G has a unique inverse element a~! € G so
that

ae =4 aG=e. (1.5)
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Any set of elements G satisfying all the axioms (G1)-(G4) is defined
to be a group. On the other hand, a set of elements which satisfies
only the first three axioms (G1)-(G3), but not (G4), is known as a
semi-group. (More rigorously, a semi-group is defined as the set of
elements which satisfy only (G1)-(G2). However, one can always add
the identity element to the group since its presence, when an inverse
is not defined, is inconsequential (see (1.3)-(1.4)) and we will adopt
this definition commonly used in physics.)

Some comments are in order here. We note that the definition
of a group does not require that the product rule satisfy the commu-
tativity law ab = ba. However, if for any two arbitrary elements of
the group, a,b € G, the product satisfies ab = ba, then the group G
is called a commutative group or an Abelian group (named after the
Norwegian mathematician Niels Henrik Abel). On the other hand, if
the product rule for a group G does not satisfy commutativity law
in general, namely, if ab # ba for some of the elements a,b € G, then
the group G is known as a non-commutative group or a non-Abelian
group. Furthermore, it is easy to see from the definition (G4) of the
inverse of an element that the inverse of a product of two elements
satisfies

(@)t =b"ta=t £a~ b1, (1.6)

in general, unless, of course, the group G is Abelian. Equation (1.6)
is easily checked in the following way

(@b)(b'a™!) =a(b(d'a™h)), by (1.2) with c=b""a"",
=a((GbNa™"), by (1.2),

=a(ea™), by (1.5),
= aa !, by (1.3),
=e, by (L.5). (1.7)

Similarly, it is straightforward to verify that (b='a=')(ab) = e.

In order to illustrate the proper definitions in a simple manner,
let us consider the following practical example from our day to day
life. Let “a” and “b” denote respectively the operations of putting
on a coat and a shirt. In this case, the (combined) operation “ab”
would correspond to putting on a shirt first (b) and then putting
on a coat (a) whereas the (combined) operation “ba” would denote
putting on a coat first and then a shirt. Clearly, the operations are
not commutative, namely, ab # ba. If we now introduce a third
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operation “c” as corresponding to putting on an overcoat, then the
law of associativity of the operations (1.2) follows, namely, (ca)b =
c(ab) = cab and corresponds to putting on a shirt, a coat and an
overcoat in that order. It now follows that the operation “bb” denotes
putting on two shirts while “b(bb) = (bb)b = bbb” stands for putting
on three shirts etc. The set of these operations would define a semi-
group if we introduce the identity (unit) element e (see (1.3)) to
correspond to the operation of doing nothing. However, this does
not make the set of operations a group for the following reason. We
note that we can naturally define the inverses “a~!” and “b~!” to
correspond respectively to the operations of taking off a coat and a
shirt. It follows then that a='a = e = b~ 'b as required. However, we
also note that the operation “aa™'” is not well defined, in general,
unless there is already a coat on the body and, therefore, aa=! # e,
in general (but a~'a = e always). As a result, the set of operations
so defined do not form a group. Nonetheless, (1.6) continues to be
valid, namely, (ab) ™! = b 'a~! # a~'b~!, whenever these operations
are well defined. In fact, since ab corresponds to putting on a shirt
and then a coat, if we are already dressed in this manner, the inverse
(ab)~' would correspond to removing these clothes (come back to
the state prior to the operation ab) which can only be done if we first
take off the coat and then the shirt. This leads to (ab)~' = b~ 'a~L.
Furthermore, let us note that if “d” denotes the operation of putting
on a trouser, then the operation of putting on a shirt and a trouser
are commutative, namely, db = bd and so on.

1.2 Examples of commonly used groups in physics

In this section, we would discuss some of the most commonly used
groups in physics. This would also help to set up the conventional
notations associated with such groups.

1.2.1 Symmetric group Sy. Although most of the commonly used
groups in physics are infinite dimensional (Lie) groups, let us begin
with a finite dimensional group for simplicity. Let us consider a set
of N distinct objects labelled by {z;},i = 1,2,--- , N and consider
all possible distinet arrangements or permutations of these elements.
As we know, there will be N! possible distinct arrangements (per-
mutations) associated with such a system and all such permutations
(operations) form a group known as the symmetric group or the per-
mutation group of N objects and is denoted by Sy . Since the number
of elements in the group is finite, such a group is known as a finite
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group and the number of elements of the group (n!) is known as the
order of the group Sy. Permutation groups are relevant in some
branches of physics as well as in such diverse topics as the study of
the Rubik’s cube. Note that every twist of the Rubik’s cube is a
rearrangement of the faces (squares) on the cube and this is how the
permutation group enters into the study of this system. There are
various possible notations to denote the permutations of the objects
in a set, but let us choose the most commonly used notation known as
the cycle notation. Here we denote by (77) the operation of permuting
the objects x; and z; in the set of the form

(’l]) T; < Xy, ,j=1,2,-++ , N, (1.8)

with all other objects left unchanged. In fact, the proper way to read
the relation (1.8) is as

(df)s  m =bmy=+ g (1.9)

This brings out the cyclic structure of the cycle notation (parenthesis)
and is quite useful when the permutation of more objects are involved.
It is clear from this cyclic structure that under a cyclic permutation

(25) = (4), (1.10)
and when permutations of three objects are involved we have

(ijk) i @ — zj > Tk — Ty, (1.11)
and

(k) = (kig) = (ki) (£ (Gik) = (kji) = (ik3)). (1.12)

Let us clarify the group structure of Sy in the case of N = 3,
namely, let us consider the set of three objects (elements) {z;} =
(x1,2,x3) where i = 1,2,3. With the cycle notation we note that
the 3! distinct permutations of these elements can be denoted by the
set of operations { P} with the elements in the set given by

P =e=(1), P =(12), Py = (23), P, = (13),
Ps = (123), Ps = (132), (1.13)

where we have introduced the identity element P, = e = (1) to
correspond to doing no permutation (every object is left unchanged



