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Preface

Surface-enhanced Raman scattering (SERS) was discovered in 1974 [1] and
correctly interpreted in 1977 [2,3]. Since then, the field has grown enormously
in breadth, depth, and understanding. One of the major characteristics
of SERS is its interdisciplinary nature. SERS exists at the boundaries
shared among physics, chemistry, colloid science, plasmonics, technology,
engineering, and biology. There are several review articles in the field [4-
6] for the advanced researcher together with a recent book dedicated to
surface-enhanced vibrational spectroscopy by Ricardo Aroca [7]. Still, we
put ourselves in the situation of a graduate student in physics, chemistry,
physical chemistry, or chemical physics, undertaking a Ph.D. project in the
area of SERS or related subjects and not having an in-depth understanding of
Raman spectroscopy itself, the theory of plasmon resonances, or elements of
colloid science. By their very nature, it is difficult to find a textbook that will
summarize the principles of these rather dissimilar and disconnected topics. It
is even less likely that this collection of topics was touched upon as a coherent
unit during most undergraduate studies in physics or chemistry. A similar
situation can arise for established researchers, either chemists or physicists,
who are newcomers to the field but might not have a background in Raman
spectroscopy or the physics of plasmons. Yet, a basic understanding of these
topics is desirable to start a research project in SERS, and as a stepping stone
to tackle the more specialized literature. This book finds its justification in
that fact, and will hopefully fill (at least) a fraction of what we feel is an
existing gap in the literature.

The content of the book covers most of the topics related to SERS and
presents them as a coherent study program that can be tackled at different
levels of complexity depending on the individual needs of the reader. For the
most important subjects, we have attempted in our presentation to provide
a graded approach: starting with a simple explanation of the most relevant
concepts, which is then developed into a more rigorous exposition, including
the more advanced aspects. In this way, we hope that this book will cater
to a variety of readers with different skills and scientific backgrounds; an
intrinsic characteristic of the general SERS and plasmonics community. To
help the reader find his/her way through the various topics and the different
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level of complexities, a detailed overview of the content of the book and a few
suggested reading plans are provided at the end of the introductory chapter.

This book is about principles and therefore does not attempt to replace
the many excellent reviews in the field, which are concentrated mainly on
the exposition of the latest research results and their interpretations. Review
articles tend to be too specialized to spend time on basic aspects of, for
example, molecular Raman spectroscopy or the physics of plasmon resonances
in metals. This book therefore attempts to make emphasis on these underlying
concepts. The selection of topics is not intended as a detailed collection of
results of the current literature and the accompanying bibliography is far
from being exhaustive. Such an extensive review of the older and current
literature of SERS is, in fact, largely provided already in Ref. [7]. The most
important examples of the current literature are used, of course, to stress
concepts or to make the explanation of certain topics clearer, but it is by no
means exhaustive. Moreover, we emphasize concepts and principles that we
judge important as a general background to SERS, but it does not represent a
complete (and unbiased) list of topics. Both authors are physicists by training
(and at heart...), and there is a natural emphasis on physical aspects of the
problem in the presentation. We have in fact deliberately tried to avoid too
much overlap in the selection of topics with the recent book by Ricardo
Aroca [7]. Not only that Aroca’s insight into the field, from a more chemical
point of view, is excellent but also, in this manner, we hope that the books
will complement each other. One aspect we do particularly emphasize is the
intricate link between SERS and the wider research field of plasmonics, i.e. the
study and applications of the optical properties of metals. SERS can, in fact,
be viewed as a subfield of plasmonics. The relation between SERS and related
plasmonics effects is, we believe, symbiotic, and we attempt to emphasize this
aspect repeatedly.

To conclude this preface, a tradition that we shall not attempt to escape is
to thank the many people and institutions that made the book (directly or
indirectly) possible. First of all, we would like to thank the continuous support
of the MacDiarmid Institute for Advanced Materials and Nanotechnology
in New Zealand, and by the same token, Victoria University of Wellington
(where part of the Institute is hosted). In particular, we would like to thank
its founding director (Prof. Paul T. Callaghan) who has been a continuous
source of inspiration and support (economic and personal) during the last
few years. Without the financial support of the MacDiarmid Institute and
Victoria University of Wellington, this book would not have been possible.
The Royal Society of New Zealand is also gratefully acknowledged for financial
support during this period. In addition, we would like to thank our direct
collaborators (past and present), and our students (in particular Robert C.
Maher from Imperial College London, and Matthias Meyer, Evan Blackie,
and Chris Galloway from Victoria University of Wellington) who paid (and
are still paying) the high price of long hours in the lab studying the SERS
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effect. Special thanks are also given to Prof. Lesley F. Cohen of Imperial
College London, who, many years ago, proposed for the first time the subject
of SERS as a possible research topic to one of the authors (PGE). For the
many scientific discussions and the longstanding collaboration we are very
grateful.

Last but not least, we would like to thank our respective family members
(Nancy and little Noah!, Sofia, and Julidn) for their understanding and
support during the long period while the writing was under way.

Eric C. Le Ru, Pablo G. Etchegoin

Wellington, New Zealand



Notations, units and other
conventions

We have made our best efforts to use notations, conventions, and units that
are consistent throughout the book. We sumarize here (for reference) our
specific choices.

Units:

We use S.I. units throughout in all our expressions (except when discussing
other units that are commonly used in the literature). These are., in our
opinion, the more versatile choice for a subject spanning through such diverse
areas of physics and chemistry. They are also more rigorous in many respects
compared, for example, to Gaussian units.

We have also endeavored when possible to specify the units of the variables
we define. This should help, we hope, in understanding the physical meaning
of each variable. These are given in between brackets [...], using either:

e The basic S.I. units: kilogram [kg] for mass, meter [m] for length, second
[s] for time, Ampere [A] for electric current, Kelvin [K] for temperature,
and mole [mol] for amount of substance,

e Or commonly used derived S.I. units, such as Joule [J] = [m? kg s~

for energy, Watt (W] = [m? kg s73] = [J s7!] for power, Coulomb
[C] = [s A] for electric charge, or Volt [V] = [m? kg s=* A~!] for
voltage.

e Or sometimes for simplicity in units of common physical constants,
such as €9 [kg™! m™ s? A?], the permittivity of vacuum. For example,
polarizability is given in [eg m?] rather than the equivalent (but more
cumbersome) S.I. expression [kg~! s AZ].

e Or common adimensional units to further clarify the meaning of the
physical quantity. These include radians [rad] for angles or [rad s~!] for
angular frequency, and steradians [sr] for solid angles.

xxi
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When relevant, we may also use “less rigorous™, but “more conventional”
units, such as electron-volt [eV] for energy, liter [L] for volume, or molar
[M] = [mol L=1] for concentration.

Mathematical notations:

Most mathematical notations we use are fairly standard. Variables are
Greek or Roman letters in italics, such as a, A, or a. Vectors are represented
by bold letters, such as A. The unit vectors for a given coordinate frame
are written as e;, where the subscript ¢ refers to the corresponding axis. In
Cartesian coordinates, where the vector position is r = (x,y, z), they are
therefore e,, ey, e,. Spherical coordinates are denoted r = (r, 6, ¢) and defined
in Appendix H. The unit vectors are then e, ey, €4 (and depend on position
r). Tensors are represented with a hat, such as &, or may be explicitly given
as the tensorial product of two vectors, such as e, ® e,,.

Variable names:

We have attempted to follow standard practices in terms of variable names,
especially for common physical constants or quantities. All of them will be
obvious within the context and in agreement with standard conventions in
the literature.

Conventions:

We use a number of conventions that may differ from other treatments of
the subject:

e A time dependence as exp(—iwt) is assumed for complex notations,
which results in positive imaginary parts for response functions, such
as the dielectric function € or the polarizability «. This convention
is commonly used in the physics literature, but is different from the
convention normally used in engineering.

e Dielectric constants and dielectric functions are always relative. They
are therefore adimensional quantities and should be multiplied by e,
the permittivity of vacuum, to obtain the absolute dielectric constant.

Moreover, as in many scientific publications, we make use of numerous
acronyms, starting with SERS, the main subject of the book! These will be
defined in the text as they are introduced, but in case of doubt, we have
attempted to include them all in the index at the end of the book.

Computer codes:

Many of the most complicated equations given in this book are not given
with the expectation that the reader will carry out further analytical studies
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from them. Rather, they are provided to be used for numerical calculations,
thanks to which the reader may experiment at will, to understand the
underlying physics or model problems adapted to his/her own specific needs.

To make this easier, we therefore also provide in some places a brief
description of the actual numerical implementation (as Matlab scripts or
functions). All the corresponding codes are available for download from the
book’s website: http://www.victoria.ac.nz/raman/book, and will be updated
as required in the future. We have also included there (as examples) a number
of Matlab scripts that can be used to reproduce (and adapt if necessary) many
figures of the book. We hope that they will be easily usable by someone not
familiar with the underlying mathematics or computer coding. A minimum
knowledge of Matlab is, however, necessary and can be acquired quickly by
browsing the Matlab help menu.

Book’s website:

The book’s website can be found at:
http://www.victoria.ac.nz/raman/book.

It contains an extensive section dedicated to Matlab computer codes relevant
to SERS and plasmonics, many of which are based on the theory presented in
the book and - in particular — on the material presented in the appendices.
We will also attempt to update it regularly with various other information
related to the book itself, and to SERS and plasmonics in general.
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