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Introduction

Traditionally, the study of torus actions on topological spaces has been consid-
ered as a classical field of algebraic topology. Specific problems connected with torus
actions arise in different areas of mathematics and mathematical physics, which re-
sults in permanent interest in the theory, new applications and penetration of new
ideas into topology.

Since the 1970s, algebraic and symplectic viewpoints on torus actions have
enriched the subject with new combinatorial ideas and methods, largely based on
the convex-geometric concept of polytopes.

The study of algebraic torus actions on algebraic varieties has quickly devel-
oped into a highly successful branch of algebraic geometry, known as toric geometry.
It gives a bijection between, on the one hand, toric varieties, which are complex
algebraic varieties equipped with an action of an algebraic torus with a dense or-
bit, and on the other hand, fans, which are combinatorial objects. The fan allows
one to completely translate various algebraic-geometric notions into combinatorics.
Projective toric varieties correspond to fans which arise from convex polytopes. A
valuable aspect of this theory is that it provides many explicit examples of alge-
braic varieties, leading to applications in deep subjects such as singularity theory
and mirror symmetry.

In symplectic geometry, since the early 1980s there has been much activity in
the field of Hamiltonian group actions on symplectic manifolds. Such an action
defines the moment map from the manifold to a Euclidean space (more precisely,
the dual Lie algebra of the torus) whose image is a convex polytope. If the torus has
half the dimension of the manifold, the image of the moment map determines the
manifold up to equivariant symplectomorphism. The class of polytopes which arise
as the images of moment maps can be described explicitly, together with an effective
procedure for recovering a symplectic manifold from such a polytope. In symplectic
geometry, as in algebraic geometry, one translates various geometric constructions
into the language of convex polytopes and combinatorics.

There is a tight relationship between the algebraic and the symplectic pictures:
a projective embedding of a toric manifold determines a symplectic form and a
moment map. The image of the moment map is a convex polytope that is dual to
the fan. In both the smooth algebraic-geometric and the symplectic situations, the
compact torus action is locally isomorphic to the standard action of (S!)" on C"
by rotation of the coordinates. Thus the quotient of the manifold by this action
is naturally a manifold with corners, stratified according to the dimension of the
stabilisers, and each stratum can be equipped with data that encodes the isotropy
torus action along that stratum. Not only does this structure of the quotient provide
a powerful means of investigating the action, but some of its subtler combinatorial
properties may also be illuminated by a careful study of the equivariant topology
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of the manifold. Thus, it should come as no surprise that since the beginning of the
1990s, the ideas and methodology of toric varieties and Hamiltonian torus actions
have started penetrating back into algebraic topology.

By 2000, several constructions of topological analogues of toric varieties and
symplectic toric manifolds had appeared in the literature, together with different
seemingly unrelated realisations of what later has become known as moment-angle
manifolds. We tried to systematise both known and emerging links between torus
actions and combinatorics in our 2000 paper [67] in Russian Mathematical Sur-
veys, where the terms ‘moment-angle manifold’ and ‘moment-angle complex’ first
appeared. Two years later it grew into a book Torus Actions and Their Applications
in Topology and Combinatorics [68] published by the AMS in 2002 (the extended
Russian edition [69] appeared in 2004). The title ‘Toric Topology’ coined by our
colleague Nigel Ray became official after the 2006 Osaka conference under the same
name. Its proceedings volume [177] contained many important contributions to the
subject, as well as the introductory survey An Invitation to Toric Topology: Ver-
tex Four of a Remarkable Tetrahedron by Buchstaber and Ray. The vertices of the
‘toric tetrahedron’ are topology, combinatorics, algebraic and symplectic geometry,
and they have symbolised many strong links between these subjects. With many
young researchers entering the subject and conferences held around the world every
year, toric topology has definitely grown into a mature area. Its various aspects are
presented in this monograph, with an intention to consolidate the foundations and
stimulate further applications.

Chapter guide

1 2 3
—_— _—
Polytopes Combinatorial Face
structures rings
5 4 8
Toric Moment-angle Homotopy
varieties complexes theory
6 7 9
Moment-angle Half-dim Cobordism
manifolds torus actions

Each chapter and most sections have their own introductions with more specific
information about the contents. ‘Additional topics’ of Chapters 1, 3 and 4 contain
more specific material which is not used in an essential way in the following chapters.
The appendices at the end of the book contain material of more general nature,
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not exclusively related to toric topology. A more experienced reader may refer to
them only for notation and terminology.

At the heart of toric topology lies a class of torus actions whose orbit spaces
are highly structured in combinatorial terms, that is, have lots of orbit types tied
together in a nice combinatorial way. We use the generic terms toric space and toric
object to refer to a topological space with a nice torus action, or to a space produced
from a torus action via different standard topological or categorical constructions.
Examples of toric spaces include toric varieties, toric and quasitoric manifolds and
their generalisations, moment-angle manifolds, moment-angle complexes and their
Borel constructions, polyhedral products, complements of coordinate subspace ar-
rangements, intersections of real or Hermitian quadrics, etc.

In Chapter 1 we collect background material related to convex polytopes, in-
cluding basic convex-geometric constructions and the combinatorial theory of face
vectors. The famous g-theorem describing integer sequences that can be the face
vectors of simple (or simplicial) polytopes is one of the most striking applications of
toric geometry to combinatorics. The concepts of Gale duality and Gale diagrams
are important tools for the study of moment-angle manifolds via intersections of
quadrics. In the additional sections we describe several combinatorial constructions
providing families of simple polytopes, including nestohedra, graph associahedra,
flagtopes and truncated cubes. The classical series of permutahedra and associahe-
dra (Stasheff polytopes) are particular examples. The construction of nestohedra
takes its origin in singularity and representation theory. We develop a differential
algebraic formalism which links the generating series of nestohedra to classical par-
tial differential equations. The potential of truncated cubes in toric topology is yet
to be fully exploited, as they provide an immense source of explicitly constructed
toric spaces.

In Chapter 2 we describe systematically combinatorial structures that appear
in the orbit spaces of toric objects. Besides convex polytopes, these include fans,
simplicial and cubical complexes, and simplicial posets. All these structures are
objects of independent interest for combinatorialists, and we emphasised the aspects
of their combinatorial theory most relevant to subsequent topological applications.

The subject of Chapter 3 is the algebraic theory of face rings (also known as
Stanley—Reisner rings) of simplicial complexes, and their generalisations to simpli-
cial posets. With the appearance of face rings at the beginning of the 1970s in the
work of Reisner and Stanley, many combinatorial problems were translated into the
language of commutative algebra, which paved the way for their solution using the
extensive machinery of algebraic and homological methods. Algebraic tools used for
attacking combinatorial problems include regular sequences, Cohen—-Macaulay and
Gorenstein rings, Tor-algebras, local cohomology, etc. A whole new thriving field
appeared on the borders of combinatorics and algebra, which has since become
known as combinatorial commutative algebra.

Chapter 4 is the first ‘toric’ chapter of the book; it links the combinatorial
and algebraic constructions of the previous chapters to the world of toric spaces.
The concept of the moment-angle complex Zx is introduced as a functor from the
category of simplicial complexes K to the category of topological spaces with torus
actions and equivariant maps. When K is a triangulated manifold, the moment-
angle complex Zx contains a free orbit Z5 consisting of singular points. Removing
this orbit we obtain an open manifold Zx \ Z4, which satisfies the relative version of
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Poincaré duality. Combinatorial invariants of simplicial complexes K therefore can
be described in terms of topological characteristics of the corresponding moment-
angle complexes Zx . In particular, the face numbers of K, as well as the more
subtle bigraded Betti numbers of the face ring Z[K] can be expressed in terms of the
cellular cohomology groups of Zx. The integral cohomology ring H*(Zx) is shown
to be isomorphic to the Tor-algebra TOI'Z[UIW,UM](Z[IC], Z). The proof builds upon
a construction of a ring model for cellular cochains of Zx and the correspond-
ing cellular diagonal approximation, which is functorial with respect to maps of
moment-angle complexes induced by simplicial maps of K. This functorial property
of the cellular diagonal approximation for Zx is quite special, due to the lack of
such a construction for general cell complexes. Another result of Chapter 4 is a ho-
motopy equivalence (an equivariant deformation retraction) from the complement
U(K) of the arrangement of coordinate subspaces in C™ determined by K to the
moment-angle complex Zx. Particular cases of this result are known in toric geom-
etry and geometric invariant theory. It opens a new perspective on moment-angle
complexes, linking them to the theory of configuration spaces and arrangements.
Toric varieties are the subject of Chapter 5. This is an extensive area with
a vast literature. We outline the influence of toric geometry on the emergence of
toric topology and emphasise combinatorial, topological and symplectic aspects
of toric varieties. The construction of moment-angle manifolds via nondegenerate
intersections of Hermitian quadrics in C™, motivated by symplectic geometry, is
also discussed here. Some basic knowledge of algebraic geometry may be required
in Chapter 5. Appropriate references are given in the introduction to the chapter.

The material of the first five chapters of the book should be accessible for a
graduate student, or a reader with a very basic knowledge of algebra and topology.
These five chapters may be also used for advanced courses on the relevant aspects
of topology, algebraic geometry and combinatorial algebra. The general algebraic
and topological constructions required here are collected in Appendices A and B
respectively. The last four chapters are more research-oriented.

Geometry of moment-angle manifolds is studied in Chapter 6. The construc-
tion of moment-angle manifolds as the level sets of toric moment maps is taken as
the starting point for the systematic study of intersections of Hermitian quadrics
via Gale duality. Following a remarkable discovery by Bosio and Meersseman of
complex-analytic structures on moment-angle manifolds corresponding to simple
polytopes, we proceed by showing that moment-angle manifolds corresponding to
a more general class of complete simplicial fans can also be endowed with complex-
analytic structures. The resulting family of non-Kahler complex manifolds includes
the classical series of Hopf and Calabi-Eckmann manifolds. We also describe im-
portant invariants of these complex structures, such as the Hodge numbers and
Dolbeault cohomology rings, study holomorphic torus principal bundles over toric
varieties, and establish collapse results for the relevant spectral sequences. We con-
clude by exploring the construction of A.E. Mironov providing a vast family of
Lagrangian submanifolds with special minimality properties in complex space, com-
plex projective space and other toric varieties. Like many other geometric construc-
tions in this chapter, it builds upon the realisation of the moment-angle manifold
as an intersection of quadrics.
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In Chapter 7 we discuss several topological constructions of even-dimensional
manifolds with an effective action of a torus of half the dimension of the mani-
fold. They can be viewed as topological analogues and generalisations of compact
nonsingular toric varieties (or toric manifolds). These include quasitoric manifolds
of Davis and Januszkiewicz, torus manifolds of Hattori and Masuda, and topologi-
cal toric manifolds of Ishida, Fukukawa and Masuda. For all these classes of toric
objects, the equivariant topology of the action and the combinatorics of the orbit
spaces interact in a harmonious way, leading to a host of results linking topology
with combinatorics. We also discuss the relationship with GKM-manifolds (named
after Goresky, Kottwitz and MacPherson), another class of toric objects having its
origin in symplectic topology.

Homotopy-theoretical aspects of toric topology are the subject of Chapter 8.
This is now a very active area. Homotopy techniques brought to bear on the study
of polyhedral products and other toric spaces include model categories, homotopy
limits and colimits, higher Whitehead and Samelson products. The required infor-
mation about categorical methods in topology is collected in Appendix C.

In Chapter 9 we review applications of toric methods in a classical field of
algebraic topology, complex cobordism. It is a generalised cohomology theory that
combines both geometric intuition and elaborate algebraic techniques. The toric
viewpoint brings an entirely new perspective on complex cobordism theory in both
its nonequivariant and equivariant versions.

The later chapters require more specific knowledge of algebraic topology, such
as characteristic classes and spectral sequences, for which we recommend respec-
tively the classical book of Milnor and Stasheff [273] and the excellent guide by
McCleary [260]. Basic facts and constructions from bordism and cobordism theory
are given in Appendix D, while the related techniques of formal group laws and
multiplicative genera are reviewed in Appendix E.
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CHAPTER 1

Geometry and Combinatorics of Polytopes

This chapter is an introductory survey of the geometric and combinatorial
theory of convex polytopes, with the emphasis on those of its aspects related to the
topological applications later in the book. We do not assume any specific knowledge
of the reader here. Algebraic definitions (graded rings and algebras) required at the
end of this chapter are contained in Section A.l of the Appendix.

Convex polytopes have been studied since ancient times. Nowadays both combi-
natorial and geometrical aspects of polytopes are presented in numerous textbooks
and monographs. Among them are the classical monograph [166] by Griinbaum and
Ziegler's more recent lectures [369]. Face vectors and other combinatorial topics are
discussed in books by McMullen—Shephard [266], Brondsted [49], and the survey
article [220] by Klee and Kleinschmidt; while Yemelichev—Kovalev—Kravtsov [362]
focus on applications to linear programming and optimisation. All these sources
may be recommended for the subsequent study of the theory of polytopes, and
contain a host of further references.

1.1. Convex polytopes

Definitions and basic constructions. Let R" be n-dimensional Euclidean
space with the scalar product (, ). There are two constructively different ways to
define a convex polytope in R™:

DEFINITION 1.1.1. A convez polytope is the convex hull conv(vi,...,v,) of a
finite set of points vy,..., v, € R™.

DEFINITION 1.1.2. A convex polyhedron P is a nonempty intersection of finitely
many half-spaces in some R"™:

(1.1) P={z eR": (ajz)+b; >0 fori=1,...,m},
where a; € R™ and b; € R. A convez polytope is a bounded convex polyhedron.

All polytopes in this book will be convex. The two definitions above produce
the same geometrical object, i.e. a subset of R" is the convex hull of a finite point
set if and only if it is a bounded intersection of finitely many half-spaces. This
classical fact is proved in many textbooks on polytopes and convex geometry, and
it lies at the heart of many applications of polytope theory to linear programming
and optimisation, see e.g. [369, Theorem 1.1].

The dimension of a polyhedron is the dimension of its affine hull. We often
abbreviate a ‘polyhedron of dimension n’ to n-polyhedron. A supporting hyperplane
of P is an affine hyperplane H which has common points with P and for which
the polyhedron is contained in one of the two closed half-spaces determined by the
hyperplane. The intersection P N H with a supporting hyperplane is called a face
of the polyhedron. Denote by P and int P = P\ P the topological boundary and

1



2 1. GEOMETRY AND COMBINATORICS OF POLYTOPES

interior of P respectively. In the case dim P = n the boundary 0P is the union of all
faces of P. Each face of an n-polyhedron (n-polytope) is itself a polyhedron (poly-
tope) of dimension < n. Zero-dimensional faces are called vertices, one-dimensional
faces are edges, and faces of codimension one are facets.

Two polytopes P C R™ and @ C R™ of the same dimension are said to be
affinely equivalent (or affinely isomorphic) if there is an affine map R™ — R™2
establishing a bijection between the points of the two polytopes. Two polytopes are
combinatorially equivalent if there is a bijection between their faces preserving the
inclusion relation. Note that two affinely isomorphic polytopes are combinatorially
equivalent, but the opposite is not true.

The faces of a given polytope P form a partially ordered set (a poset) with re-
spect to inclusion. It is called the face poset of P. Two polytopes are combinatorially
equivalent if and only if their face posets are isomorphic.

DEFINITION 1.1.3. A combinatorial polytope is a class of combinatorially equiv-
alent polytopes.

Many topological constructions later in this book will depend only on the com-
binatorial equivalence class of a polytope. Nevertheless, it is always helpful, and
sometimes necessary, to keep in mind a particular geometric representative P rather
than thinking in terms of abstract posets. Depending on the context, we shall de-
note by P, @, etc., geometric polytopes or their combinatorial equivalent classes
(combinatorial polytopes). Whenever we consider both geometric and combinatorial
polytopes, we shall use the notation P ~ @ for combinatorial equivalence.

We refer to (1.1) as a presentation of the polyhedron P by inequalities. These
inequalities contain more information than the polyhedron P, for the following
reason. It may happen that some of the inequalities (a;, ) + b; > 0 can be re-
moved from the presentation without changing P; we refer to such inequalities as
redundant. A presentation without redundant inequalities is called irredundant. An
irredundant presentation of a given polyhedron is unique up to multiplication of
pairs (a;,b;) by positive numbers.

EXAMPLE 1.1.4 (simplex and cube). An n-dimensional simplex A™ is the con-
vex hull of n + 1 points in R™ that do not lie on a common affine hyperplane.
All faces of an n-simplex are simplices of dimension < n. Any two n-simplices
are affinely equivalent. Let eq,..., e, be the standard basis in R™. The n-simplex
conv(0, ey, ..., e, ) is called standard. Equivalently, the standard n-simplex is spec-
ified by the n + 1 inequalities

(1.2) z; >0 fori=1,....n, and —z;—--—x,+12>0.

The regular n-simplex is the convex hull of the endpoints of ey, ..., e,41 in R*1,
The standard n-cube is given by

(1.3) " =[0,1"={(zr1,...,zp) ER": 0K z; <1 fori=1,...,n}

Equivalently, the standard n-cube is the convex hull of 2" points (¢1,...,£,) € R",

where £; = 0 or 1.Whenever we work with combinatorial polytopes, we shall refer
to any polytope combinatorially equivalent to I" as a cube, and denote it by I™.

The cube I" has 2n facets. We denote by F} the facet specified by the equation
z = 0, and by F} that specified by the equation xx = 1, for 1 <k < n.



