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Preface

This book presents a collection of contributions concerning the task of solv-
ing geometry related problems with suitable algebraic embeddings. It is not
only directed at scientists who already discovered the power of Clifford alge-
bras for their field, but also at those scientists who are interested in Clifford
algebras and want to see how these can be applied to problems in computer
science, signal theory, neural computation, computer vision and robotics. It
was therefore tried to keep this book accessible to newcomers to applica-
tions of Clifford algebra while still presenting up to date research and new
developments.

The aim of the book is twofold. It should contribute to shift the fundamen-
tal importance of adequate geometric concepts into the focus of attention, but
also show the algebraic aspects of formulating a particular problem in terms
of Clifford algebra. Using such an universal, general and powerful algebraic
frame as Clifford algebra, results in multiple gains, such as completeness, lin-
earity and low symbolic complexity of representations. Even problems which
may not usually be classified as geometric, might be better understood by
the human mind when expressed in a geometric language.

As a misleading tendency, mathematical education with respect to geo-
metric concepts disappears more and more from curricula of technical sub-
jects. To a certain degree this is caused by the mathematicians themselves.
What mathematicians today understand as geometry or algebraic geome-
try is far from beeing accessible to engineers or computer scientists. This is
the more regrettable as the Erlangen program of Felix Klein [FK95] on the
strong relations between algebra and geometry is of great potential also for
the applied sciences.

This book is a first attempt to overcome this situation. As computer
scientists and engineers know in principle of the importance of algebra to
gain new qualities of modelling, they will profit from geometric interpreta-
tions of their models. This was also the experience the authors of this book
had made. However, it is not necessarily trivial to translate a geometry re-
lated problem into the language of Clifford algebra. Once translated, it also
needs some experience to manipulate Clifford algebra expressions. The many
applied problems presented in this book should give engineers, computer sci-
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entists and physicists a rich set of examples of how to work with Clifford
algebra.

The term ‘geometric problem’ will at times be understood very loosely. For
instance, what relation exists between a Fourier transform or its computation
as FF'T (fast Fourier transform algorithm) and geometry? It will become clear
that the Fourier transform is strongly related to symmetry as geometric entity
and that its multidimensional extension necessitates the use of an adequate
algebraic frame if all multidimensional symmetries are to be kept accessible.

William K. Clifford (1845-1879) [47] introduced what he called “geomet-
ric algebra'”. It is a generalisation of Hermann G. Grassmann’s (1809-1877)
exterior algebra and also contains William R. Hamilton’s (1805-1865) quater-
nions. Geometric or Clifford algebra has therefore a strong unifying aspect,
since it allows us to view different geometry related algebraic systems as spe-
cializations of one “mother algebra”. Clifford algebras may therefore find a
use in quite different fields of science, while still sharing the same fundamental
properties.

David Hestenes was one of the first who revived GA in the mid 1960’s and
introduced it in different fields of physics with the goal to make it a unified
mathematical language that encompasses the system of complex numbers, the
quaternions, Grassmann’s exterior algebra, matrix algebra, vector, tensor and
spinor algebras and the algebra of differential forms. In order to achieve this,
he fashioned his GA as a specialization of the general CA which is particularly
well suited for the use in physics and, as it turned out, engineering and
computer science. It is his merit that GA got widely accepted in diverse fields
of physics [112, 109] and engineering. The algebra most similar to Hestenes’s
GA is probably Grassmann’s exterior algebra which is also used by a large
part of the physics community [FR97]. Those readers who are interested in
the evolution of the relations between algebra and geometry can find a short
overview in [YAGSS].

I first became interested in Clifford or geometric algebra by reading a short
paper in Physics World, written by Anthony Garrett [AG92]. At that time
I was searching for a way to overcome some serious problems of complete
representations of local, intrinsically multidimensional structures in image
processing. I got immediately convinced that the algebraic language presented
in this paper would open the door to formulate a real multidimensional and
linear signal theory. Since then we not only learned how to proceed in that
way, but we also discovered the expressive power of GA for quite different
aspects of multidimensional signal structure [34, FSR2000].

In the Cognitive Systems research group in Kiel, Germany, we are work-
ing on all aspects concerning the design of seeing robot systems [SO99]. This
includes pattern recognition with neural networks, computer vision, multi-
dimensional signal theory and robot kinematics. We found that in all these

! Today the terms “geometric algebra” (GA) and “Clifford algebra” (CA) are
being used interchangeably.
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fields GA is a particularly useful algebraic frame. In the process of this re-
search we made valuable experiences of how to model problems with GA.
Several contributions to this book present this work?.

Designing a seeing robot system is a task where quite a number of different
competences have to be modelled mathematically. However, in the end the
whole system should appear as one. Furthermore, all competences have to be
organized or have to organize themselves in a cycle, which has perception and
action as two poles. Therefore, it is important to have a common mathemat-
ical language to bring the diverse mathematical disciplines, contributing to
the diverse aspects of the perception-action cycle, closer together and eventu-
ally to fuse them to a general conception of behaviour based system design.
In 1997 we brought to life the international workshop on algebraic frames
for the perception-action cycle (AFPAC) [217], with the intention to further
this fusion of disciplines under the umbrella of a unified algebraic frame.
This workshop brought together researchers from all over the world, many
of whom became authors in this book. In this respect this book may be con-
sidered a collection of research results inspired by the AFPAC’97. Hopefully,
the AFPAC 2000 workshop will be of comparable success.

Another mid-range goal is the design of GA processors for real-time com-
putations in robot vision. Today we have to accept a great gap between the
low symbolic complexity on the one hand and the high numeric complexity
of coding in GA on the other hand. Because available computers cannot even
process complex numbers directly, we have to pay a high computational cost
at times, when using GA libraries. In some cases this is already compensated
by the gain achieved through a concise problem formulation with GA. Nev-
ertheless, full profit in real-time applications is only possible with adequate
Processors.

The book is divided into three main sections.

Part I (A Unified Algebraic Approach for Classical Geometries) intro-
duces Euclidean, spherical and hyperbolic geometry in the frame of GA. Also
the geometric modelling capabilities of GA from a general point of view are
outlined. In this first part it will become clear that the language of GA is
developing permanently and that by shaping this language, it can be adapted
to the problems at hand.

David Hestenes, Hongbo Li and Alyn Rockwood summarize in chapter
1 the basic methods, ideas and rules of GA. This survey will be helpful for
the reader as a general reference for all other chapters. Of chapters 2, 3, and
4, written by Hongbo Li et al., I especially want to emphasize two aspects.
Firstly, the use of the so-called conformal split as introduced by Hestenes
[110] in geometric modelling. Secondly, the proposed unification of classical
geometries will become important in modelling catadioptic camera systems
(see [GDO0]), possessing both reflective and refractive components, for robot
vision in a general framework. In chapter 6 Leo Dorst gives an introduction

2 This research was funded since 1997 by the Deutsche Forschungsgemeinschalft.
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to GA which will help to increase the influence of GA on many fields in
computer science. Particularly interesting is his discussion of a very general
filter scheme. Ambjorn Naeve and Lars Svensson present their own way of
constructing GA in chapter 5. Working in the field of computer vision, they
choose to demonstrate their framework in applications to geometrical optics.

Part II (Algebraic Embedding of Signal Theory and Neural Computa-
tion) is devoted to the development of a linear theory of intrinsically multidi-
mensional signals and to make Clifford groups accessible in neural computa-
tions with the aim of developing neural networks as experts of basic geometric
transformations and thus of the shape of objects.

This part is opened by a contribution of Valeri Labunets and his daugh-
ter Ekaterina Rundblad-Labunets, both representing the Russian School of
algebraists. In chapter 7 they emphasize two important aspects of image
processing in the CA framework. These are the modelling of vector-valued
multidimensional signal data, including colour signals, and the formulation of
invariants with that respect. Their framework is presented in a very general
setting and, hopefully, will be picked up by other researchers to study its
application.

The other six chapters of part II are written by the Kiel Cognitive Sys-
tems Group. In chapters 8 to 11 Thomas Biilow, Michael Felsberg and Gerald
Sommer, partially in cooperation with Vladimir Chernov, Samara (Russia)
for the first time are extensively presenting the way to represent intrinsically
multidimensional scalar-valued signals in a linear manner by using a GA em-
bedding. Several aspects are considered, as non-commutative and commuta-
tive hypercomplex Fourier transforms (chapters 8,9), fast algorithms for their
computation (chapter 10), and local, hypercomplex signal representations in
chapter 11. As a field of application of the proposed quaternion-valued Ga-
bor transform in the two dimensional case, the problem of texture analysis is
considered. In that chapter the old problems of signal theory as missing phase
concepts of intrinsically two dimensional signals, embedded in 2D space, and
the missing completeness of local symmetry representation (both problems
have the same roots) could be overcome. Thus, the way to develop a linear
signal theory of intrinsically multidimensional signals is prepared for future
research.

Quite a different topic is handled by Sven Buchholz and Gerald Sommer
in chapters 12 and 13. This is the design of neurons and neural nets (MLPs)
which perform computations in CA. The new quality with respect to mod-
elling neural computation results from the fact that the use of the geometric
product in vector spaces induces a structural bias into the neurons. Looking
onto the data through the glasses of “CA-neurons” gives valuable contraints
while learning the intrinsic (geometric) structure of the data, which results in
an excellent generalization ability. As a nearly equally important aspect the
complexity of computations is drastically reduced because of the linearization
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effects of the algebraic embedding. These nets indeed constitute experts for
geometric transformations.

Part III (Geometric Algebra for Computer Vision and Robotics) is con-
cerned with actual topics of projective geometry in modelling computer vision
tasks (chapters 14 to 17) and with the linear modelling of kinematic chains
of points and lines in space (chapters 18 to 21).

In chapter 14, Christian Perwass and Joan Lasenby demonstrate a geo-
metrically intuitive way of using the incidence algebra of projective geometry
in GA to describe multiple view geometry. Especially the use of reciprocal
frames should be emphasized. Many relations which have been derived in
matrix algebra and Grassmann-Cayley algebra in the last years can be found
here again. An application with respect to 3D reconstruction using vanish-
ing points is laid out in chapter 15. Another application is demonstrated in
chapter 16 by Eduardo Bayro-Corrochano and Bodo Rosenhahn with respect
to the computation of the intrinsic parameters of a camera. Using the idea of
the absolute conic in the context of Pascal’s theorem, they develop a method
which is comparable to the use of Kruppa equations.

Hongbo Li and Gerald Sommer present in chapter 17 an alternative way to
chapter 14 of formulating multiple view geometry. In their approach they use
a coordinate-free representation whereby image points are given as bivectors.
Using this approach, they discovered new constraints on the trifocal tensor.

Chapters 18-21 are concerned with kinematics. In chapter 18, Eduardo
Bayro-Corrochano is developing the framework of screw geometry in the lan-
guage of motor algebra, a degenerate algebra isomorphic to that of dual
quaternions. In contrast to dual quaternions, motors relate translation and
rotation as spinors and, thus, result in some cases in simpler expressions. This
is the case especially in considering kinematic chains, as is done by Eduardo
Bayro-Corrochano and Detlev Kahler in chapter 19. They are modelling the
forward and the inverse kinematics of robot arms in that framework. The use
of dual quaternions with respect to motion alignment is studied as a tutorial
paper by Kostas Daniilidis in chapter 20. His experience with this frame-
work is based on a very successful application with respect to the hand-eye
calibration problem in robot vision.

Finally, in chapter 21, Yiwen Zhang, Gerald Sommer and Eduardo Bayro-
Corrochano are designing an extended Kalman filter for the tracking of lines.
Because the motion of lines is intrinsical to the motor algebra, the authors
can demonstrate the performance based on direct observations of such higher
order entities. The presented approach can be considered as 3D-3D pose
estimation based on lines. A more extensive study of 2D-3D pose estimation
based on geometric constraints can be found in [SRZ00].

In summary, this book can serve as a reference of the actual state of
applying Clifford algebra as a frame for geometric computing. Furthermore,
it shows that the matter is alive and will hopefully grow and mature fast.
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Thus, this book is also to be seen as a snapshot of current research and hence
as a “workbench” for further developments in geometric computing.

To complete a project like this book requires the cooperation of the con-
tributing authors. My thanks go to all of them. In particular I would like to
thank Michael Felsberg for his substantial help with the coordination of this
book project. He also prepared the final layout of this book with the help of
the student Thomas Jdger. Many thanks to him, as well.

Kiel, December 2000 Gerald Sommer
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