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Preface to the Fifth Edition

Semiconductor physics is of fundamental importance in understand-
ing the behaviour of semiconductor devices and for improving their
performance. Among the more recent devices are those exploiting the
properties of III-V nitrides, and others that explore the technical pos-
sibilities of manipulating the spin of the electron. The III-V nitrides,
which have the hexagonal structure of wurtzite (ZnO), have proper-
ties that are distinct from those like GaAs and InP, which have the
cubic structure of zinc blende (ZnS). Moreover, AIN and GaN have
large band gaps, which make it possible to study electron transport at
very high electric fields without producing breakdown. This property,
combined with an engineered large electron population, makes GaN an
excellent candidate for high-power applications. In such situations the
role of hot phonons and their coupling with plasmon modes cannot be
ignored. This has triggered a number of recent studies concerning the
lifetime of hot phonons, leading to the discovery of new physics. An ac-
count of hot-phonon effects, the topic of the first of the new chapters.
seemed to be timely.

In the new study of spintronics, a vital factor is the rate at which
an out-of-equilibrium spin population relaxes. The spin of the elec-
tron scarcely enters the subject matter of previous editions of this book
other than in relation to the density of states, so an account of spin
processes has been overdue, hence the second of the new chapters in
this edition. The rate of spin relaxation is intimately linked to details of
the band structure, and in describing this relationship I have taken the
opportunity to describe the band structure of wurtzite and the corres-
ponding eigenfunctions of the bands, from which the cubic results are
deduced. There are several processes that relax spin in bulk material,
and these are described.

The properties of semiconductors extend beyond the bulk. All
semiconductors have surfaces and, when incorporated into devices,
they have interfaces with other materials. The physics of metal-
semiconductor interfaces has been studied ever since the discovery of
rectifying properties in the early part of the 20th century. More re-
cently, the advent of so-called low-dimensional devices has highlighted
problems connected with the physics of interfaces between different
semiconductors, so an account of the properties of surfaces and inter-
faces was, it seemed to me, no longer timely, but long overdue. Hence.
the third new chapter.

This new edition is therefore designed to expand (rather than replace)
the physics of bulk semiconductors found in the previous edition. The
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expansion has been motivated by the subject matter of my own re-
search and that of colleagues at the Universities of Essex and Cornell.
I am particularly indebted to Dr Angela Dyson for her insightful
collaboration in these studies.

Thorpe-le-Soken, 2013 B.K.R.



Preface to the Fourth
Edition

This new edition contains three new chapters concerned with material
that is meant to provide a deeper foundation for the quantum processes
described previously, and to provide a statistical bridge to phenomena
involving charge transport. The recent theoretical and experimental
interest in fundamental quantum behaviour involving mixed and en-
tangled states and the possible exploitation in quantum computation
meant that some account of this should be included. A comprehensive
treatment of this important topic involving many-particle theory would
be beyond the scope of the book, and I have settled on an account that
is based on the single-particle density matrix. A remarkably successful
bridge between single-particle behaviour and the behaviour of popu-
lations is the Boltzmann equation, and the inclusion of an account of
this and some of its solutions for hot electrons was long overdue. If the
Boltzmann equation embodied the important step from quantum stat-
istical to semi-classical statistical behaviour, the drift-diffusion model
completes the trend to fully phenomenological description of trans-
port. Since many excellent texts already cover this area I have chosen
to describe only some of the more exciting transport phenomena in
semiconductor physics such as those involving a differential negat-
ve resistance, or involving acoustoelectric effects, or even both, and
something of their history.

A new edition affords the opportunity to correct errors and omis-
sions in the old. No longer being a very assiduous reader of my own
writings, I rely on others, probably more than I should, to bring errors
and omissions to my attention. I have been lucky, therefore, to work
with someone as knowledgeable as Dr N.A. Zakhleniuk who has sug-
gested an update of the discussion of cascade capture, and has noted
that the expressions for the screened Bloch—Gruneisen regime were for
2-D systems and not for bulk material. The update and corrections have
been made, and I am very grateful for his comments.

My writing practically always takes place at home and it tends to
involve a mild autism that is not altogether sociable, to say the least.
Nevertheless, my wife has put up with this once again with remark-
able good humour and I would like to express my appreciation for her
support.

Thorpe-le-Soken, 1999 B.K.R.



Preface to the Third
Edition

One of the topics conspicuously absent in the previous editions of this
book was the scattering of phonons. In a large number of cases phon-
ons can be regarded as an essentially passive gas firmly anchored to
the lattice temperature, but in recent years the importance to transport
of the role of out-of-equilibrium phonons, particularly optical phon-
ons, has become appreciated, and a chapter on the principal quantum
processes involved is now included. The only other change, apart from
a few corrections to the original text (and I am very grateful to those
readers who have taken the trouble to point out errors) is the inclusion
of a brief subsection on exciton annihilation, which replaces the ac-
count of recombination involving an excitonic component. Once again,
only processes taking place in bulk material are considered.

Thorpe-le-Soken B.K.R.
December 1992



Preface to the Second
Edition

This second edition contains three new chapters—'Quantum processes
in a magnetic field’, ‘Scattering in a degenerate gas’, and ‘Dynamic
screening’—which I hope will enhance the usefulness of the book.
Following the ethos of the first edition I have tried to make the rather
heavy mathematical content of these new topics as straightforward and
accessible as possible. I have also taken the opportunity to make some
corrections and additions to the original material—a brief account of
alloy scattering is now included—and I have completely rewritten the
section on impact ionization. An appendix on the average separation
of impurities has been added, and the term ‘third-body exclusion’ has
become ‘statistical screening’, but otherwise the material in the first
edition remains substantially unchanged.

Thorpe-le-Soken 1988 B.K.R.



Preface to the First Edition

It is a curious fact that in spite of, or perhaps because of, their
overwhelming technological significance, semiconductors receive com-
paratively modest attention in books devoted to solid state physics.
A student of semiconductor physics will find the background theory
common to all solids well described, but somehow all the details, the
applications, and the examples—just those minutiae which reveal so
vividly the conceptual cast of mind which clarifies a problem—are all
devoted to metals or insulators or, more recently, to amorphous or even
liquid matter. Nor have texts devoted exclusively to semiconductors,
excellent though they are, fully solved the student’s problem, for they
have either attempted global coverage of all aspects of semiconductor
physics or concentrated on the description of the inhomogeneous semi-
conducting structures which are used in devices, and in both cases they
have tended to confine their discussion of basic physical processes to
bare essentials in order to accommodate breadth of coverage in the
one and emphasis on application in the other. Of course, there are
distinguished exceptions to these generalizations, texts which have spe-
cialized on topics within semiconductor physics, such as statistics and
band structure to take two examples, but anyone who has attempted
to teach the subject to postgraduates will, I believe, agree that some-
thing of a vacuum exists, and that filling it means resorting to research
monographs and specialist review articles, many of which presuppose
a certain familiarity with the field.

Another facet to this complex and fascinating structure of creating,
assimilating, and transmitting knowledge is that theory, understand-
ably enough, tends to be written by theoreticians. Such is today’s
specialization that the latter tend to become removed from direct in-
volvement in the empirical basis of their subject to a degree that makes
communication with the experimentalist fraught with mutual incom-
prehension. Sometimes the difficulty is founded on a simple confusion
between the disparate aims of mathematics and physics—an axiomatic
formulation of a theory may make good mathematical sense but poor
physical sense—or it may be founded on a real subtlety of physical be-
haviour perceived by one and incomprehended by the other, or more
usually it may be founded on ignorance of each other’s techniques.
of the detailed analytic and numerical approximations propping up a
theory on the one hand, and of the detailed method and machinery
propping up an experimental result on the other. Certainly, experiment-
alists cannot avoid being theoreticians from time to time, and they have
to be aware of the basic theoretical structure of their subject. As stu-
dents of physics operating in an area where physical intuition is more
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important than logical deduction they are not likely to appreciate a
formalistic account of that basic structure even though it may pos-
sess elegance. Intuition functions on rough approximation rather than
rigour, but too few accounts of theory take that as a guide.

This book, then, is written primarily for the postgraduate student
and the experimentalist. It attempts to set out the theory of those
basic quantum-mechanical processes in homogeneous semiconductors
which are most relevant to applied semiconductor physics. Therefore
the subject matter is concentrated almost exclusively on electronic pro-
cesses. Thus no mention is made of phonon—phonon interactions, nor
is the optical absorption by lattice modes discussed. Also, because I
had mainstream semiconductors like silicon and gallium arsenide in
mind, the emphasis is on crystalline materials in which the electrons
and holes in the bands obey non-degenerate statistics, and little men-
tion is made of amorphous and narrow-gap semiconductors. Only the
basic quantum mechanics is discussed; no attempt is made to follow
detailed applications of the basic theory in fields such as hot electrons,
negative-differential resistance, acousto-electric effects, etc. To do that
would more than triple the size of the book. The theoretical level is
at elementary first- and second-order perturbation theory, with not a
Green’s function in sight; this is inevitable, given that the author is
an experimentalist with a taste for doing his own theoretical work.
Nevertheless, those elementary conceptions which appear in the book
are, | believe, the basic ones in the field which most of us employ in
everyday discussions, and since there is no existing book to my know-
ledge which contains a description of all these basic processes I hope
that this one will make a useful reference source for anyone engaged in
semiconductor research and device development.

Finally, a word of caution for the reader. A number of treatments in
the book are my own and are not line-by-line reproductions of standard
theory. Principally, this came about because the latter did not exist in a
form consistent with the approach of the book. One or two new expres-
sions have emerged as a by-product, although most of the final results
are the accepted ones. Where the treatment is mine, the text makes this
explicit.

Colchester 1981 B.K.R
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Band structure
of semiconductors

1.1. The crystal Hamiltonian

For an assembly of atoms the classical energy is the sum of the
following:

(a) the kinetic energy of the nuclei;

(b) the potential energy of the nuclei in one another’s electrostatic field;
(c) the kinetic energy of the electrons;

(d) the potential energy of the electrons in the field of the nuclei;

(e) the potential energy of the electrons in one another’s field;

(f) the magnetic energy associated with the spin and the orbit.

Dividing the electrons into core and valence electrons and leaving
out magnetic effects leads to the following expression for the crystal
Hamiltonian:

p; P;
H=;2_A’41+EU(R,—R,,,)+Z$+;V(ri—Rz)

+Ze2/4ne0 (L1)

|ri — 1]

where / and m label the ions, i and j label the electrons, p is the mo-
mentum, M is the ionic mass, m is the mass of the electron, U(R; — R,)
is the interionic potential, and V(r; — R;) is the valence—electron—ion
potential.

The Schrédinger equation determines the time-independent energies
of the system:

HE =E~& (1.2)

where H is now the Hamiltonian operator.

1.2. Adiabatic approximation

The mass of an ion is at least a factor of 1.8 x 10° greater than that of
an electron, and for most semiconductors the factor is well over 104,
For comparable energies and perturbations ions therefore move some
10% times slower than do electrons, and the latter can be regarded as




