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Preface

Dear Student,

An old adage says that you can’t (or shouldn’t) judge a book by its cover. How-
ever, the cover of this book—and its title—say a great deal about what’s inside.
The cover photo is an image of graphite, the most common form of a common
element: carbon. The illustration shows what might happen if we could pull
back an ultrathin surface layer of graphite and view it using an extremely pow-
erful microscope. What we would see is a layer of carbon atoms, each chemi-
cally bonded to three others, forming a seemingly endless array of hexagons.
Here’s the cool part: peeling back and viewing a single layer of graphite is more
than a theoretical possibility—it’s actually happened! In addition, scientists
have been able to study the properties of these monolayers of carbon atoms, and
what they've discovered is pretty amazing. These layers represent the strongest
material known—much stronger than the strongest steel—and they conduct
electricity better than the most conductive metal. This remarkable material even
has its own name: graphene.

Why does graphene have such remarkable properties? The answer to that
question is contained in this book’s title: Chemistry: An Atoms-Focused Approach.
'The properties of graphene are tied directly to the presence of those hexagonal
arrays of carbon atoms and the nature of the chemical bonds that join them
together. The geometry and strength of those bonds contribute to the overall
strength of graphene, and the unusually high mobilities of the electrons that
make up those bonds contribute to the material’s outstanding conductivity.

Our cover illustrates a central message of this book: the properties of sub-
stances are directly linked to their atomic and molecular structures. In our book
we start with the smallest particles of matter and assemble them into more
elaborate structures: from subatomic particles to single atoms to monatomic
ions and polyatomic ions, and from atoms to small molecules to bigger ones to
truly gigantic polymers. By constructing this layered particulate view of matter,
we hope our book helps you visualize the underlying chemistry of a wide range
of substances and the changes they undergo. With this ability to visualize atoms
and molecules, you won’t have to resort to memorizing formulas and reactions
as a strategy for surviving general chemistry. Instead, you will be able to under-
stand why elements combine to form compounds with particular formulas and
why substances react with each other the way they do. For example, you won’t
have to memorize the charges of the common ions that make seawater (and your
blood plasma and tears) salty; instead, you will understand why the many bil-
lions of tons of sodium dissolved in the sea (and the 100 grams of it inside your
body) exist entirely as Na* ions.
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Context

While our primary learning goal is for you to be able to interpret and even pre-
dict the physical and chemical properties of substances based on their atomic
and molecular structures, we would also like you to understand how chemistry is
linked to other scientific disciplines. We illustrate these connections using con-
texts drawn from fields such as biology, environmental science, materials science,
astronomy, geology, and medicine. We hope that this approach helps you bet-
ter understand how scientists apply the principles of chemistry to treat and cure
diseases, to make more-efficient use of natural resources, and to minimize the
impact of human activity on our planet and its climate.

Problem-Solving Strategies

Another major goal of our book is to help you improve your problem-solving
skills. To solve problems in chemistry, you first need to recognize the connections
between the information provided in a problem and the answer you are asked to
find. Sometimes the hardest part of solving a problem is distinguishing between
information that is relevant and information that is not. Once you are clear on
where you are starting and where you are going, planning for and carrying out a
solution become much easier.

To help you hone your problem-solving skills, we have developed a framework
that we introduce in Chapter 1. It is a four-step approach we call coasT, which is
our acronym for (1) Collect and Organize, (2) Analyze, (3) Solve, and (4) Think

about it. We use these four steps in every Sample Exer-
. ciseand in the solutions to odd problems in the Student’s
BB samMPLE EXERCISE 10.5 Applying Amontons's Law LO4

Solutions Manual. They are also used in the hints and
Labels on aerosol cans caution against their incineration because the cans may explode feedbaCk embedded in the Smartwork online homework

when the pressure inside them exceeds 3.00 atm. At what temperature in degrees Cel- program To summarize the four steps:

sius might an aerosol can burst if its internal pressure is 2.00 atm at 25°C?

COLLECT AND ORGANIZE We are given the temperature (7 = 25°C) and pressure
(P, = 2.00 atm) of a gas and asked to determine the temperature (73) at which the
pressure (P,) reaches 3.00 atm.

ANALYZE Because the gas is isolated in a rigid aerosol can, we know that the quan-
tity of gas and its volume are constant. Amontons's law (Equation 10.18) relates the
pressures of a confined quantity of gas at two different temperatures. To estimate our
answer, we note that the pressure in the can must increase by 50% to reach 3.00 atm.
Pressure is directly proportional to absolute temperature, so it, too, must increase by
50%. The initial temperature of 25°C is nearly 300 K, so a 50% increase in absolute
temperature corresponds to a final temperature near 450 K, or about 175°C.

SOLVE Rearranging Equation 10.18 to solve for 75:
T\P,

Sy

n=5 \

and inserting the given 7'and P values:

5 125+ 273) KIB.00 wem) _

! 2.00 atm A

Converting 7, to degrees Celsius:
T, = 447 K - 273 = 174°C

THINK ABOUT IT 'This temperature is close to our estimated value. It is also well
below the temperatures that solid waste experiences in the fires of an operating incin-
crator, which makes the warning label on the can all the more important.

Practice Exercise Air pressure in cach of the tires of an automobile is adjusted to
34 psi at a gas station in San Diego, California, where the air temperature is 68°F.
After a 3-hour drive along Interstate Highway 8, the car and driver are in Yuma,
Arizona, where the temperature is 110°F. What is the pressure in the tires?

COLLECT AND ORGANIZE helps you understand where
to begin to solve the problem. In this step we often
rephrase the problem and the answer that is sought, and
we identify the relevant information that is provided
in the problem statement or available elsewhere in the

book.

ANALYZE is where we map out a strategy for solving the
problem. As part of that strategy we often estimate what
a reasonable answer might be.

SOLVE applies our analysis of the problem from the sec-
ond step to the information and relations from the first
step to actually solve the problem. We walk you through
each step in the solution so that you can follow the logic
and the math.

THINK ABOUT IT reminds us that an answer is not the
last step in solving a problem. We should check the
accuracy of the solution and think about the value of a
quantitative answer. Is it realistic? Are the units correct?
Is the number of significant figures appropriate? Does it
agree with our estimate from the Analyze step?



Many students use the Sample Exercises more than any other part of the
book. Sample Exercises take the concept being discussed and illustrate how to
apply it to solve a problem. We think that repeated application of the coast
framework will help you refine your problem-solving skills and hope that the
approach becomes habit-forming for you. When you finish a Sample Exercise,
you'll find a Practice Exercise to try on your own. If you have the ebook, the
Practice Exercises are “live,” meaning that you can solve them and receive hints
and answer-specific feedback when you need help. The next few pages describe
how to use the tools built into each chapter to gain a conceptual understanding
of chemistry.

Chapter Structure

Each chapter begins with an opening story, which provides glimpses of how the
chemistry in the chapter that follows connects to the world. We have used topics
that should be familiar to you, but we place them in chemical contexts that may
surprise you.

If you are trying to decide what is most important in a chapter, check the
Learning Outcomes listed on the first page. Whether you are reading the chap-
ter from first page to last or reviewing it for an exam, the Learning Outcomes
should help you focus on the key information you need and the skills you should
acquire. You will also see which Learning Outcomes are linked to which Sample
Exercises in the chapter.

As you study each chapter, you will find key terms in boldface in the text and
in a running glossary in the margin. We have deliberately duplicated these defini-
tions so that you can continue reading without interruption but quickly find them
when doing homework or reviewing for a test. All key terms are also defined in
the Glossary in the back of the book.

Many concepts are related to others described earlier in the book. We point
out these relationships with Connection icons in the margins. We hope they help
you draw your own connections between major themes covered in the book.

To help you develop your own microscale view of matter, we use molecular
art to enhance photos and figures, and to illustrate what is happening at the
atomic and molecular levels.

If you're looking for additional help visualizing a concept, we have about 100
ChemTours, denoted by the ChemTour icon, available online at wwnpag.es/
chemtours. ChemTours demonstrate dynamic processes and help you visualize
events at the molecular level. Many of the ChemTours allow you to manipulate
variables and observe the resulting changes. Questions

/—wm—’\‘

@@ CONNECTION In Chapter 9

we defined standard conditions of
temperature and pressure as they apply
to thermochemistry. Note that STP and
standard conditions are not the same.
STP applies strictly to calculations
involving the gas laws, while standard
conditions apply to thermochemical data.
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»Il CHEMTOUR

at the end of the ChemTour tutorials offer step-by-
step assistance in solving problems and provide useful il :
feedback Which of the graphs in Figure 10.17 correctly describes the relationship between the
o product of pressure and volume (PF) as a function of pressure (P) for a given quantity of
Concept Tests are short, conceptual questions that gas at constant temperature?

serve as a self-check by asking you to stop and answer
a question relating to what you just read. We designed
them to help you see for yourself whether you have

PV
PV

PV

PV

grasped a key concept and can apply it. We have an
average of one Concept Test per section and many have @ ®)
a visual component. You may find some Concept Tests
challenging. We provide the answers to all Concept

(c)

FIGURE 10.17

(d)

Tests in the back of the book. =
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At the end of each chapter is a special Sample Exercise that draws on several
key concepts from the chapter and occasionally others from preceding chapters to
solve a problem that is framed in the context of a real-world scenario or incident.
We call these Integrated Sample Exercises. You may find them more challeng-
ing than most of those that precede them in each chapter, but please invest your
time in working through them because they represent authentic exercises that will
enhance your problem-solving skills.

SAMPLE EXERCISE 10.16 Integrating Concepts: Air for a Jet Engin

The Bocing 767 (Figure 10.42
body commercial airliners (over 1000 have been built), and it’s

is one of the most popular wide-

also one of the most fuel efficient. While cruising at 851 km/hr

(530 mph) at an altitude of 11,000 m (36,000 f1), a 767-200ER :
(the extended-range version of the plane) consumes about 1720 H
ULS. gallons of jet fuel per hour. 3
We are given the following facts: (1) the density of jet fuel §
is 0.80 g/mL; (2) at an altitude of 11,000 m, P, = 210 mmHg :
and 7'=-56°C; (3) 1 U.S. gallon = 3.785 L; and (4) dodecane, :
C,,Hy, is considered an appropriate model hydrocarbon for jet FIGURE 10.42 A Bocing 767-200ER.
fuel.

2. Converting the volume of fuel consumed in 1 hour

a. What volume of air, in liters, does a cruising 767 need so into an equivalent number of moles of C,H,,: :
that it can (lllll"[t!lfl)’ burn an hour's w”n'! of jet fuel? 3. /q, k 1000 s 080 80 g Bl
b. Fuel efficiency is often based on number of passengers 1720 gl —— 17033 » g

times distance traveled per volume of fuel consumed.
In the United States, this value is typically expressed in = 3.06 X 10" mol C,,H,,
units of passenger-miles per gallon. However, in much of 3. Gotivetingsles:oE CaHyg thto molks o O
37 mol O,
2 motCrgbh;

4. In converting moles of O, into a volume of air

the rest of the world, efficiency units are inverted and are
typically expressed in liters per 100 km per passenger.
Express the fuel efficiency of a full 767-200ER (which
holds 224 passengers) in both sets of units.

= 5.66 % 10° mol O,

3.06 % 10" mebCrHy

COLLECT AND ORGANIZE We know the quantity of dodec- using the ideal gas law, we need to convert pressure
ance to be combusted, and we are asked to calculate the volume units from mmHg to atm and temperature to the
of air needed for complete combustion—that is, to convert its Kelvin scale:

C and H content into CO, and H,O. We know the pressure

and temperature of the air. According to Table 10.1, dry air is o

20.95% O.. V= ”;‘,’ = — —
210 fmeg(

(5.66 % 10° m»l)(()()ﬂ")(l(y:'iwl k)(lﬂ 56) K

760 mm-Hg

ANALYZE 'This exercise involves a chemical reaction, so writ-

ing a balanced chemical equation describing it is a good place to - 3.65 X 10710,

start. Next we need to convert the volume of fuel into an equiva-
lent number of moles of fuel, and then to use the stoichiometry 5. Airis 20.95% O, by volume, so the volume of air
of the reaction to convert that value to moles of O,. We will then the engines must take in each hour is

caleulate the equivalent volume of O, using the ideal gas equa-

tion. (‘The pressure is below 1 atm, so there should be no need to 3.65 % 107 0, [ 2‘?3";& = 1.74 x 10° L air
correct for nonideal behavior.) Finally we will convert the vol-
ume of O, to the corresponding volume of air. The volume of air b. Calculating fuel efficiency in U.S. Customary units
needed cach hour by the engines of a 767 should be enormous. based on the distance traveled and fuel consumed in
SOLVE 1 hour:
a. Caleulating volume of air needed in 1 hour: 224 passengers X 530 miles 9. ssonpeinticel]
1. Write the balanced chemical equation describing 1720 gal =ad0 e e mlcigalion .

C i caction. The reactants ; B .
His tpnkascnesetions e (SRt and The corresponding efficiency value in liters per 100
products are 3 2 i
km per passenger is
CraHayy () + Oy = COL(g) + H,0(g) .
1720 ok X 3'17“’ L :

% 100 = 3.41 L/100 km-passenger

We first balance the numbers of C and I atoms:

Coal1y(€) + Oy(g) > 12COLg) + 13 1L,O() i prassngers X351 im

THINK ABOUT IT The calculated volume of air is 174 million

This leaves vith an odd er of O atoms - . . Cs . i
b legves g aiha /odd muenub O ators i liters. That is a lot of air, but then 1720 U.S. gallons of jet fuel is

the right, requiring that we multiply all the terms
by 2 and then balance the number of O atoms:

2.Cy,Hy,(0) + 37 O, (L ) — 24 CO, (K) + 26 H,0(g)

alot of fuel, Perhaps a more interesting value is the 69.0 passen-
ger-miles per gallon: better than that of most automobiles with
two occupants, and you reach your destination much faster,

Also at the end of each chapter are a thematic Summary and a Problem-
Solving Summary. The first is a brief synopsis of the chapter, organized by sec-
tion. Key figures provide visual cues as you review. The Problem-Solving Sum-
mary is unique to this general chemistry book—it outlines the different types
of problems you should be able to solve, where to find examples of them in the
Sample Exercises, and reiterates relevant concepts and equations.
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PROBLEM-SOLVING SUMMARY OIS vasessseersennane S TTTITRPrTrr tsssevasersresvensrssvanserovensesfl]
TYPE OF PROBLEM CONCEPTS AND EQUATIONS SAMPLE EXERCISES
Calculating relative rates cffusion rate, _ s {0 10
of effusion effusion ratey Aty 'l .
Measuring gas pressure See the conversion factors inside the back cover and Table 10.2. 10.2
with a manometer;
converting pressure units
Applying Boyle's law PV, =Pyl (10.10) 10.3

) " h_n
Applying Charles's law T (10.14) 104
P, P
Applying Amontons’s law =T (10.18) 105
1
Applying the combined P _ P (10.19) 106
gas law T T; : -
Applying the ideal gas law PV = nRT (10.20) 10.7-10.10
"

Calculating mole fractions 8= 5 (10.23)
and partial pressures . 0

e = %P (10.24)
Calculating the quantity Calculate the partial pressure (P,) of the collected gas using the equation 1012
of a gas collected by water p=p -p
displacement iSO
Calculating gas solubility Con =% i (10.26) 10.13
using Henry's law
Calculating root-mean- = V}RT 10.27) 1014
square speeds M
Uuing.lh:vander“’n:ls [l' + ”f ’:):J (V= nb) = nRT (10.28)
cquation ¥

— o e
s ——
-

Following the summaries are groups of questions and problems. The first
group consists of Visual Problems. In many of them, you are asked to interpret a
molecular view of a sample or a graph of experimental data.

Concept Review Questions and Problems come next, arranged by topic in
the same order as they appear in the chapter. Concept Reviews are qualitative and
often ask you to explain why or how something happens. Problems are paired and
can be quantitative, conceptual, or a combination of both. Contextual problems

have a title that describes the context in which
the problem is placed. Finally, Additional Prob-
lems can come from any section or combination
of sections in the chapter. Some of them incor-
porate concepts from previous chapters. Problems
marked with an asterisk (*) are more challenging
and often take multiple steps to solve.

We want you to have confidence in using the
answers in the back of the book as well as the Stu-
dent’s Solutions Manual, so we used a rigorous
triple-check accuracy program for this book. Each
end-of-chapter question and problem was solved
independently by the Solutions Manual author,
Karen Brewer, and by two additional chemical
educators. Karen compared her solutions to those
from the two reviewers and resolved any discrep-
ancies. This process is designed to ensure clearly
written problems and accurate answers in the
appendices and Solutions Manual.

10.99. A sumple of oxygen is collected over water at 25°C
and 1.00 atm. If the total sample volume is 0.480 L.,
how many moles of O, are collected

10.100. Water vapor is removed from the O, sample in
Problem 10.99. What is the volume of the dry O,
a1 25°C and 1.00 atm?

10.101. The following reactions are carried out in sealed
containers. Will the total pressure after each reaction is
complete be greater than, less than, or equal to the toral
pressure before the reaction? Assume all reactants and
products are gases at the same temperature.

a N,O(g) + NOs(g) -3 NO(g) + 2 Oy()
b 250,(g) + O(g) = 2504(g)
e CHy(g) + 5 O,(g) = 3CO, () + 4 H,0(g)

10102, In each of the following gas-phase reactions, determine
whether the total pressure at the end of the reaction
(carried out in a sealed, rigid vessel) will be greater than,
less than, or equal to the total pressure at the beginning.
Assume all reactants and products are gases at the same
temperature
a. Hy(g) + Cly(g) — 2 HCI(g)

b 4 NHy(g) +5Oy(g) = 4 NO(g) + 6 H,O0(»)
e 2NO(g) + O4(g) — 2 NOL(g)

“10.103. High-Altitude Mountaineering Most alpine climbers
breathe pure oxygen near the summits of the world's
highest mountains. How much more O, is there in a
Tungful of pure O, at an elevation where atmospheric
pressure is 266 mmHy than in a lungful of air at sea level?
Express your answer as a percentage.

10.104. Scuba Diving A scubu diver is at a depth of 50 m, where
the pressure is 5.0 atm. What should be the mole fraction
of O, in the gas mixture the diver breathes to achieve the
same Py, as atsea level?

Solubilities of Gases and Henry's Law

CONCEPT REVIEW

10.109. Why is the Henry's law constant for CO, so much larger
than thse for N, and O, at the same temperature?
Hint: Does CO, react with water?

10.110. As water in a beaker is heated, bubbles form inside the
beaker at temperatures well below the boiling point of
water. What gas is in the bubbles?

10.111.. What type of intermolecular interaction accounts for the
limited solubility of methanc in water?

*10.112. Air is primarily a mixture of nitrogen and oxygen. Is the
Henry's law constant for the solubility of air in water the
sum of & for N and & for O, Explain why or why not

PROBLEMS

*10.113. Arterial Blood Arterial blood contains about 0.25 g of
oxygen pe liter at 37°C and standard atmospheric pressure.
What is the Henry's law constant, in mol/(L. + arm), for O,
dissolution in blood?

10114, The solubility of O, in water is 6.5 mg/L aran

atmospheric pressure of 1 atm and a temperature of 40°C
Caleulate the Henry's law constant of O, ar 40°C

“10.115. Oxygen for Climbers and Divers [lsc the Henry's law
constant for O, dissolved in arterial blood from Problem
10.113 ta caleulate the solubility of O, in the blood of (a) 2
climber on Mt. Everest (P,,,, = 0,35 atm) and (b) a scuba
diver hreathing air at a depth of 20 meters (7= 3.0 atm).

"10.116. The solubility of air in water is approximately 7.9
104 Mar 20°C and 1.0 atm. Calculate the Henry's law
constant for air.

Gas Diffusion: Molecules Moving Rapidly
PROBLEMS
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