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Preface

I prefer the open landscape under a clear sky with its depth
of perspective, where the wealth of sharply defined nearby
details gradually fades away towards the horizon.

This book, which is in two parts, provides an introduction to the theory of vector-
valued functions on Euclidean space. We focus on four main objects of study
and in addition consider the interactions between these. Volume I is devoted to
differentiation. Differentiable functions on R” come first, in Chapters 1 through 3.
Next, differentiable manifolds embedded in R" are discussed, in Chapters4 and 5. In
Volume II we take up integration. Chapter 6 deals with the theory of n-dimensional
integration over R". Finally, in Chapters 7 and 8 lower-dimensional integration over
submanifolds of R" is developed; particular attention is paid to vector analysis and
the theory of differential forms, which are treated independently from each other.
Generally speaking, the emphasis is on geometric aspects of analysis rather than on
matters belonging to functional analysis.

In presenting the material we have been intentionally concrete, aiming at a
thorough understanding of Euclidean space. Once this case is properly understood,
it becomes easier to move on to abstract metric spaces or manifolds and to infinite-
dimensional function spaces. If the general theory is introduced too soon, the reader
might get confused about its relevance and lose motivation. Yet we have tried to
organize the book as economically as we could, for instance by making use of linear
algebra whenever possible and minimizing the number of €-§ arguments, always
without sacrificing rigor. In many cases, a fresh look at old problems, by ourselves
and others, led to results or proofs in a form not found in current analysis textbooks.
Quite often, similar techniques apply in different parts of mathematics; on the other
hand, different techniques may be used to prove the same result. We offer ample
illustration of these two principles, in the theory as well as the exercises.

A working knowledge of analysis in one real variable and linear algebra is a
prerequisite. The main parts of the theory can be used as a text for an introductory
course of one semester, as we have been doing for second-year students in Utrecht
during the last decade. Sections at the end of many chapters usually contain appli-
cations that can be omitted in case of time constraints.

This volume contains 334 exercises, out of a total of 568, offering variations
and applications of the main theory, as well as special cases and openings toward
applications beyond the scope of this book. Next to routine exercises we tried
also to include exercises that represent some mathematical idea. The exercises are
independent from each other unless indicated otherwise, and therefore results are
sometimes repeated. We have run student seminars based on a selection of the more
challenging exercises.
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Xii Preface

In our experience, interest may be stimulated if from the beginning the stu-
dent can perceive analysis as a subject intimately connected with many other parts
of mathematics and physics: algebra, electromagnetism, geometry, including dif-
ferential geometry, and topology, Lie groups, mechanics, number theory, partial
differential equations, probability, special functions, to name the most important
examples. In order to emphasize these relations, many exercises show the way in
which results from the aforementioned fields fit in with the present theory; prior
knowledge of these subjects is not assumed, however. We hope in this fashion to
have created a landscape as preferred by Weyl,' thereby contributing to motivation,
and facilitating the transition to more advanced treatments and topics.

lWeyl, H.: The Classical Groups. Princeton University Press, Princeton 1939, p. viii.
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Introduction

Motivation. Analysis came to life in the number space R" of dimension n and its
complex analog C". Developments ever since have consistently shown that further
progress and better understanding can be achieved by generalizing the notion of
space, for instance to that of a manifold, of a topological vector space, or of a
scheme, an algebraic or complex space having infinitesimal neighborhoods, each of
these being defined over a field of characteristic which is O or positive. The search
for unification by continuously reworking old results and blending these with new
ones, which is so characteristic of mathematics, nowadays tends to be carried out
more and more in these newer contexts, thus bypassing R". As a result of this
the uninitiated, for whom R” is still a difficult object, runs the risk of learning
analysis in several real variables in a suboptimal manner. Nevertheless, to quote F.
and R. Nevanlinna: “The elimination of coordinates signifies a gain not only in a
formal sense. It leads to a greater unity and simplicity in the theory of functions
of arbitrarily many variables, the algebraic structure of analysis is clarified, and
at the same time the geometric aspects of linear algebra become more prominent,
which simplifies one’s ability to comprehend the overall structures and promotes
the formation of new ideas and methods”.2

In this text we have tried to strike a balance between the concrete and the ab-
stract: a treatment of differential calculus in the traditional R" by efficient methods
and using contemporary terminology, providing solid background and adequate
preparation for reading more advanced works. The exercises are tightly coordi-
nated with the theory, and most of them have been tried out during practice sessions
or exams. lllustrative examples and exercises are offered in order to support and
strengthen the reader’s intuition.

Organization. In a subject like this with its many interrelations, the arrangement
of the material is more or less determined by the proofs one prefers to or is able
to give. Other ways of organizing are possible, but it is our experience that it is
not such a simple matter to avoid confusing the reader. In particular, because the
Change of Variables Theorem in Volume Il is about diffeomorphisms, it is necessary
to introduce these initially, in the present volume; a subsequent discussion of the
Inverse Function Theorems then is a plausible inference. Next, applications in
geometry, to the theory of differentiable manifolds, are natural. This geometry
in its turn is indispensable for the description of the boundaries of the open sets
that occur in Volume II, in the Theorem on Integration of a Total Derivative in
R", the generalization to R" of the Fundamental Theorem of Integral Calculus on
R. This is why differentiation is treated in this first volume and integration in the
second. Moreover, most known proofs of the Change of Variables Theorem require
an Inverse Function, or the Implicit Function Theorem, as does our first proof.
However, for the benefit of those readers who prefer a discussion of integration at

2Nevanlinna, F., Nevanlinna, R.: Absolute Analysis. Springer-Verlag, Berlin 1973, p. 1.
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XVi Introduction

an early stage, we have included in Volume II a second proof of the Change of
Variables Theorem by elementary means.

On some technical points. We have tried hard to reduce the number of €-8
arguments, while maintaining a uniform and high level of rigor. In the theory of
differentiability this has been achieved by using a reformulation of differentiability
due to Hadamard.

The Implicit Function Theorem is derived as a consequence of the Local Inverse
Function Theorem. By contrast, in the exercises it is treated as a result on the
conservation of a zero for a family of functions depending on a finite-dimensional
parameter upon variation of this parameter.

We introduce a submanifold as a set in R" that can locally be written as the
graph of a mapping, since this definition can easily be put to the test in concrete
examples. When the “internal” structure of a submanifold is important, as is the
case with integration over that submanifold, it is useful to have a description as an
image under a mapping. If, however, one wants to study its “external” structure,
for instance when it is asked how the submanifold lies in the ambient space R",
then a description in terms of an inverse image is the one to use. If both structures
play a role simultaneously, for example in the description of a neighborhood of the
boundary of an open set, one usually flattens the boundary locally by means of a
variable + € R which parametrizes a motion transversal to the boundary, that is, one
considers the boundary locally as a hyperplane given by the condition ¢ = 0.

A unifying theme is the similarity in behavior of global objects and their asso-
ciated infinitesimal objects (that is, defined at the tangent level), where the latter
can be investigated by way of linear algebra.

Exercises. Quite a few of the exercises are used to develop secondary but interest-
ing themes omitted from the main course of lectures for reasons of time, but which
often form the transition to more advanced theories. In many cases, exercises are
strung together as projects which, step by easy step, lead the reader to important
results. In order to set forth the interdependencies that inevitably arise, we begin an
exercise by listing the other ones which (in total or in part only) are prerequisites as
well as those exercises that use results from the one under discussion. The reader
should not feel obliged to completely cover the preliminaries before setting out to
work on subsequent exercises; quite often, only some terminology or minor results
are required. In the review exercises we have primarily collected results from real
analysis in one variable that are needed in later exercises and that might not be
familiar to the reader.

Notational conventions. Our notation is fairly standard, yet we mention the fol-
lowing conventions. Although it will often be convenient to write column vectors as
row vectors, the reader should remember that all vectors are in fact column vectors,
unless specified otherwise. Mappings always have precisely defined domains and



Introduction Xvii

images, thus f : dom(f) — im(f), but if we are unable, or do not wish, to specify
the domain we write f : R" D— R’ for a mapping that is well-defined on some
subset of R” and takes values in R”. We write Ny for {0} UN, N, for N U {oc},
and R, for {x €e R | x > 0}. The openinterval {x e R|a <x <b}inRis
denoted by ] a, b [ and not by (a, b), in order to avoid confusion with the element
(a.b) € R%.

Making the notation consistent and transparent is difficult; in particular, every
way of designating partial derivatives has its flaws. Whenever possible, we write
D f for the j-th column in a matrix representation of the total derivative Df
of a mapping f : R" — RP”. This leads to expressions like D; f; instead of
Jacobi’s classical é—)‘L etc. As a bonus the notation becomes independent of the
designation of the céordinates in R”, thus avoiding absurd formulae such as may
arise on substitution of variables; a disadvantage is that the formulae for matrix
multiplication look less natural. The latter could be avoided with the notation D f*,
but this we rejected as being too extreme. The convention just mentioned has not
been applied dogmatically; in the case of special coordinate systems like spherical
coordinates, Jacobi’s notation is the one of preference. As a further complication,

D J is ?sed by many authors, especially in Fourier theory, for the momentum operator

We use the following dictionary of symbols to indicate the ends of various items:

4 Proof
O  Definition
“r  Example
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Chapter 1

Continuity

Continuity of mappings between Euclidean spaces is the central topic in this chapter.
We begin by discussing those properties of the n-dimensional space R" that are
determined by the standard inner product. In particular, we introduce the notions
of distance between the points of R" and of an open set in R"; these, in turn, are
used to characterize limits and continuity of mappings between Euclidean spaces.
The more profound properties of continuous mappings rest on the completeness of
R", which is studied next. Compact sets are infinite sets that in a restricted sense
behave like finite sets, and their interplay with continuous mappings leads to many
fundamental results in analysis, such as the attainment of extrema as well as the
uniform continuity of continuous mappings on compact sets. Finally, we consider
connected sets, which are related to intermediate value properties of continuous
functions.

In applications of analysis in mathematics or in other sciences it is necessary to
consider mappings depending on more than one variable. For instance, in order to
describe the distribution of temperature and humidity in physical space-time we
need to specify (in first approximation) the values of both the temperature T and the
humidity h at every (x,1) € R® x R = R*, where x € R? stands for a position in
space and 7 € R for a moment in time. Thus arises, in a natural fashion, a mapping
f :R* > R? with f(x,t) = (T, h). The first step in a closer investigation of the
properties of such mappings requires a study of the space R" itself.

1.1 Inner product and norm

Let n € N. The n-dimensional space R” is the Cartesian product of n copies of
the linear space R. Therefore R" is a linear space; and following the standard

1



2 Chapter 1. Continuity

convention in linear algebra we shall denote an element x € R" as a column vector

X
x=| : | eR"
Xn
For typographical reasons, however, we often write x = (xj, ..., x,) € R", or, if
necessary, x = (x,...,X,)" where ' denotes the transpose of the 1 x n matrix.

Then x; € R is the j-th coordinate or component of x.
We recall that the addition of vectors and the multiplication of a vector by a
scalar are defined by components, thus for x, y € R"and A € R

(xy,.nns X))+ Oy eovyn) = aa+y...., Xn + Yn),
Alxp, ..., X)) = (Axy, ..., AXxp).

We say that R" is a vector space or a linear space over R if it is provided with
this addition and scalar multiplication. This means the following. Vector addition
satisfies the commutative group axioms: associativity (x +y) +z = x + (y + 2)),
existence of zero (x + 0 = x), existence of additive inverses (x + (—x) = 0),
commutativity (x + y = y + x); scalar multiplication is associative ((Ap)x =
A(ux)) and distributive over addition in both ways, i.e. (A(x + y) = Ax + Ay and
(A 4+ w)x = Ax + px). We assume the reader to be familiar with the basic theory
of finite-dimensional linear spaces.

Formappings f : R" D— R”, we have the component functions f; : R" >— R,
for 1 <i < p, satisfying

fi
f= : :R" > R?.
I
Many geometric concepts require an extra structure on R” that we now define.

Definition 1.1.1. The Euclidean space R" is the aforementioned linear space R”
provided with the standard inner product

(x,y)= ) x5 (. yeR".

I<j<n

In particular, we say that x and y € R” are mutually orthogonal or perpendicular
vectors if (x, y) = 0. (@)

The standard inner product on R" will be used for introducing the notion of a
distance on R”, which in turn is indispensable for the definition of limits of mappings
defined on R” that take values in R?. We list the basic properties of the standard
inner product.
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Lemma 1.1.2. All x, y, z € R" and A € R satisfy the following relations.
(i) Symmetry: (x, y) = (y, x).
(i1) Linearity: (Ax +y, z) = A{x, 2) + (y, 2).

(iii) Positivity: (x, x) > 0, with equality if and only if x = 0.

Definition 1.1.3. The standard basis for R" consists of the vectors
€j=(6|j,...,5,,j)€R" (ISJSVI),

where §;; equals 1 if i = j and equals 0 if i # j. O

Thus we can write

x= Y xje; (xeR". (1.1)

I<j<n

With respect to the standard inner product on R" the standard basis is orthonormal,
that is, (e;, e;) = &, forall 1 <, j < n. Thus, |lej|| = 1, while e; and e}, for
distinct i and j, are mutually orthogonal vectors.

Definition 1.1.4. The Euclidean norm or length ||x|| of x € R" is defined as
flxll = v/ (x, x). O

From this definition and Lemma 1.1.2 we directly obtain

Lemma 1.1.5. All x, y € R" and X € R satisfy the following properties.
(i) Positivity: ||x|| > O, with equality if and only if x = 0.
(i) Homogeneity: ||[Ax| = [A]]lx]|.

(iii) Polarization identity: (x, y) = %(le + yllZ —|lx - yllz), which expresses the
standard inner product in terms of the norm.

(iv) Pythagorean property: ||x £ y|I*> = |lx||* + ||y|I* if and only if (x, y) = 0.

Proof. For (iii) and (iv) note

lx£yl? =@y, xxy)=(x,x)£(x, y)x(y,x)+ .y
= lxll + Iyl £ 2(x, y). -



