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To my optimal son, Neven



Preface

This set of notes grew from a graduate course that I taught at Georgia Tech,
in Atlanta, during the fall of 1999, on the invitation of Wilfrid Gangbo. It is
a great pleasure for me to thank Georgia Tech for its hospitality, and all the
faculty members and students who attended this course, for their interest
and their curiosity. Among them, I wish to express my particular gratitude
to Eric Carlen, Laci Erdés, Michael Loss, and Andrzej Swiech. It was Eric
and Michael who first suggested that I make a book out of the lecture notes
intended for the students.

Three years passed by before I was able to complete these notes; of
course, I took into account as much as 1 could of the mathematical progress
made during those years.

Optimal mass transportation was born in France in 1781, with a very
famous paper by Gaspard Monge, Mémoire sur la théorie des déblais et des
remblais. Since then, it has becotne a classical subject in probability theory,
economics and optimization. Very recently it gained extreme popularity,
because many researchers in different areas of mathematics understood that
this topic was strongly linked to their subject. Again, one can give a precise
birthdate for this revival: the 1987 note by Yann Brenier, Décomposition
polaire et réarrangement des champs de vecteurs. This paper paved the way
towards a beautiful interplay between partial differential equations, fluid
mechanics, geometry, probability theory and functional analysis, which has
developed over the last ten years, through the contributions of a number of
authors, with optimal transportation problemns as a comion denominator.
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x Preface

These notes are definitely not intended to be exhaustive, and should
rather be seen as an introduction to the subject. Their reading can be com-
plemented by some of the reference texts which have appeared recently.
1 particular, 1 should mention the two volumes of Mass transportation
problems, by Rachev and Riischendorf, which depict wmany applications of
Monge-Kantorovich distances to various problems, together with the classi-
cal theory of the optimal transportation problem in a very abstract setting;
the survey by Evans, which can also be considered as an introduction to
the subject, and describes several applications of the L' theory (i.e., when
the cost function is a distance) which I did not cover in these notes; the ex-
tremely clear lecture notes by Amnbrosio, centered on the L' theory from the
point of view of caleulus of variations; and also the lecture notes by Urbas,
which are a marvelous reference for the regularity theory of the Monge-
Ampére equation arising in mass transportation. Also recommended is a
very pedagogical and rather complete article recently written by Ambrosio
and Pratelli, and focused on the L' theory, from which 1 extracted many
remarks and examnples,

The present volurne does not go too deeply into some of the aspects which
arc very well treated in the above-mentioned references: in particular, the
L' theory is just sketched, and so is the regularity theory developed by Caf-
farelli and by Urbas. Several topics are hardly mentioned, or not at all: the
application of mass transportation to the problem of shape optitnization,
as developed by Bouchitte and Duttazzo; the fasciuating semi-geostrophic
system in meteorology, whose links with optimal transportation arc now un-
derstood thanks to the amazing work of Cullen, Purser and collaborators; or
applications to image processing, developed by Tannenbanm and his group.
Ou the other hand, 1 hope that this text is a good clementary reference
source for such topics as displacernent interpolation and its applications to
functional inequalities with a geometrical content, or the differcutial view-
point of Otto, which has proven so successful in various coutexts (like the
study of rates of equilibration for certain dissipative equations). 1 have tried
to keep proofs as simple as possible throughout the book, keeping, in mind
that they should be understandable by non-cxpert students. 1 have also
stated many results without proofs, either to convey a better intuition, or
Lo give an account of recent. research in the field. In the end, these notes are
intended to serve both as a course, and as a survey.

Though the literature on the Monge-Kantorovich problem is enormous, 1
did not want the bibliography to become gigantic, and therefore | did not try
to give complete lists of references. Many authors who did valuable work ou
optimal transportation problems (Abdellaoui, Cuesta-Albertos, Dall’Aglio,
Kellerer, Matran, Tuero-Diaz, and many others) are not even cited within



Prefacc xi

the text; I apologize for that. Much more complete lists of references on the
Monge-Kantorovich problem can be found in Gangho and McCann [141],
and especially in Rachev and Riischendorf [211). On the other hand, I did
vot hesitate to give references for subjects whose relation o the optimal
trausportation problem is not necessarily finnediate, whenever I felt that
this could give the reader some insights in related ficlds.

At first T did not inlend to consider the optimal mass transportation
problem in a very general framework. Bul a graduate course that I taught
in the fall of 2001 on the mean-field limit in statistical physics, made me
realize the practical importance of handling mass transportation on infinite-
dimensioual spaces such as the Wiener space, or the space of probability
measures on sowe phase space. Tools like the Kantoroviel duality, or the
metric properties induced by optimal transportation, happeu to be very use-
ful in such contexts — as was nnderstood long ago by people doing research
in mathematical statistics. This is why in Chapters 1 and 7 T have treated
those topics nuder quite general assutnptions, in a context of Polish spaces
(which is not the most general setting that one could imagine, but which
is sufficient for all the applications [ ain used to). Almost all the rest of
the notes deals with finite-dhimensional spaces. Let me mention that several
researchers, in particular Ustinel and F-Y. Wang, are currently working
to extend some of the geowetrical vesults described below to an infinite-
diwensional setting allowing for the Wicner space.

A more precise overview of the contents of this book is given at the end
of the Introduction, after a precise statewent of Lhie problem. T shall also
summarize at the begiuniug the main npotation used in the text; to avoid
devastating confusion, note carefully the definition of a “sinall set” in R™,
as a set of Haugdorl dimmcusion at most 1 - 1.

As the reader should understand, the subject is still very vivid and
likely to get into new developments in the next years. Arsoug topics which
arc still waiting for progress, let me only mwention the numerical methods
for computing optimal transportations. At the time of this writing, some
noticeable progress seems to have been done on this subject by Tannenbaum
and his coworkers. Even though these beantiful new schemies seem extremely
promising, they nced confirmatiou from the mathewatical point of view,
which is one reason why T skipped this topie (Lhe other reason being my
lack of compeience). Some related resulls can be found in [152]

Also T wish to emphasize that optimal mass transportation, besides its
own intrinsic interest, sometimes appears as a surprisingly elfective tool in
problems which do nol a priori seem Lo have any relation to it. For this
reason I think that petiiug al least superficially acquainted with it 1s a wise
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investment for any student in probability, analysis or partial differential
equations.

This book owes a lot to many people. I was lucky enough to learn the
subject of optimal mass transportation directly from two of those researchers
who have most contributed to turn it into a fascinating area: Yann Brenier
and Felix Otto; it is a pleasure here to express my enormous gratitude to
them. I first encountered optimal transportation in Tanaka’s work about
the Boltzmann equation, and my curiosity about it increased dramatically
from discussions with Yann; but it was only after hearing a beautiful and
enthusiastic lecture given in Paris by Craig Evans, that I made up my mind
to study the subject thoroughly. My involvement in the study of functional
inequalities related to mass transportation was partly triggered by interac-
tions with Michel Ledoux, whose influence is gratefully acknowledged. The
present manuscript profited a lot from numerous discussions with Luigi Am-
brosio, Eric Carlen, Dario Cordero-Erausquin, Wilfrid Gangho and Robert
McCann. Both Robert and Luigi taught the material of this book, made
many suggestions and pointed out numerous misprints and mistakes in the
first version of these notes. The most serious one concerned the “proof” of
Theorem 1.3, as given in the first version of these notes; the gap was fixed
thanks to the kind help of Luigi again, and of Bernd Kirchheim, with the
final result of an improved statement. Some of my students at the Ecole
normale supéricure also spotted and repaired a gap in the proof of Theo-
rem 2.18. Frangois Bolley, Jean-Fran¢ois Coulombel and Maxime Hauray
should be thanked for the time they spent hunting for mistakes and mis-
prints in various parts of the book, and testing many of the exercises and
problems. Richard Dudley was kind enough to give a quick but thorough
look at Chapters 1 and 7. Chapter 4 would not have existed without the ex-
planations which I received from Luis Caffarelli and Andrzej Swiech. Most
of the material in Chapter 6 was taught to me by Franck Barthe. Chapter 8
was reshaped by the exchanges which 1 had with Luigi Ambrosio, Nicola
Gigli and Etienne Ghys during the last stages of preparation of the manu-
script. Finally, Mike Cullen corrected some mistakes in the presentation of
the physical model in Problem 9 of Chapter 10.

All comments, suggestions and bug reports will be extremely welcome
and can be sent to me by electronic mail at cvillaniQumpa.ens-1yon.fr.
I will maintain o list of errata on my Internet home-page, accessible via the
Internet server of the Mathematics Department at Ecole normale supérieure
de Lyon, http://www.umpa.ens-lyon.fr/

Cédric Villani
Lyon, January 2003



Notation

The identity map on an arbitrary space will be denoted by Id. Whenever X
is a set, we write 1x(z) = 1if 2 € X, 1x(z) = 0 otherwise. The complement
of a set A will be denoted by A°.

Throughout the text, whenever we write R* the dimension n is an ar-
bitrary integer n > 1. Whenever A is a Lebesgue-measurable subset of R",
its n-dimensional Lebesgue measure will be denoted by |A|. This should not
be confused with the Euclidean norm of a vector x € R", which will also be
denoted by |z|. Whenever z,y € R* we write -y = (z,y) = Y g Zilii-

Given some abstract measure space X, we shall denote by P(X) the
set of all probability measures on X, and by M(X) the set of all finite
signed measures on X (i.e. precisely the vector space generated by P(X)).
The space M (X) is equipped with the norm of total variation, {|ulrv =
inf{py{X]+ p-{X]}, where the infimum is taken over all nonnegative mea-
sures (4, p— such that g = gy — g, The infimum is obtained when pg
and p_ are singular to each other, in which case p = p4 — p_ is said to
be the Hahn decomposition of u. Of course, if v is a nonnegative measure
and f a measurable map, then || f|| 114y = | frliTv. From Chapter 1 on, we
shall only work in topological spaces, equipped with their Borel o-algebra;
so P(X) will be the set of Borel probability measures. We shall sometimes
write wx—P(X) for P(X) equipped with the weak topology.

The Dirac mass at a point z will be denoted by 6,: 6z[A] =1if z € A,
0 otherwise.

If a particular measure y on X is singled out, for p € [1,00) we shall
denote by LP{X) or L”(du) the Lebesgue space of order p for the reference

—
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X1V Notation

measure 1, with the usual identification of functions which coincide almost
evervwhere. Whenever p > 1, we shall denote by ¢/ its conjugate exponent:
1 1
—_ ,1_ _;. —_ .
P v

Whenever T is a map from & measure space X, equipped with a measure
Jay 10 ant arbitrary space ¥, we denote by T#p the image measure (or push-
forward) of g by T. Explicitly, (TH#u)[B)] = p[T~Y(B)], where 771(B3) =
fr € X T(x) € By, Theset of all T 0 X — X such that T#p = ¢ will
be denoted by S(X). We shall always use push-forward in this sense: when
we write T#f = ¢, where f and g are nonnegative functions. this mweans
thiat the mcasure having density f is pushied foward to the mcasure having
density g (usvally the reference measure will be the Lebesgue measure).

If X is a topologieal spase, then it will be equipped with its Borel o-
aipebra. We shall denote by C{X) the space of continnous functions on X
b Cu( X)) the space of bonnded conthatons functions on X; and by Cy(X)
the space of continuous functions o & going to O at infinity. Sometimes
Lhese notations will be replaced by GG R). Gl XGR), Co( X:R). The space
Cu{X) comes with a natural noru, |[ulle = supy lufl. Whenever A ¢ X,
we denoie by Int{A) the largest open set contained in A, and by 4 the
swallest. cosed set containing A. We set 94 = A\ Int(A4). By definition,
the support of a weasure poon X will be the smallest closed set F' < X with
JiS NI = 0, and will be denoted Supp e, On the ether hand, wlion we
say lhat g1 is concentrated on A < X, this ouly means that p[X \ 4] = 0,
without A being necessarily closed.

I X is a metric space, we shall eqaip it with the topology induced by
ity distance, and denote by B(x,r) the ball of radiue » and center 2. We
shali denote by Lip{X) the sct of all Lipschitz functions on X we shall alse
denote by Po(X) the space of Borel probability measures g on X with, fiuite
moment, of order p, in the senes that ‘]‘d(:::(,,:r)” dp{x) < 4oo for some (and
thus any) oy € X.

When X is a Banach space and A its topelogical dual, we shiall denote
by (-, -} the duality bhracket between X and X*. A pariicular ease of tlhas s
tiv scalar product in a Hilberi space.

If 4 18 a convex fupction on & Banach spuce X, ther ' will stand for
its dual convex function, in the sense of Legendre-Tenchel duality. The
subditferential of ¢ will be denoted by dip, and identified with its graph,
which is a subset of X x X", Basic definitions for these objects are reculled
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in Chapter 2. From Chapter 3 ou, we shall abbreviate “proper lower semi-
continuous convex function” into just “convex function”.

When X is a smooth Riemannian manifold, or a Bauach space, and F
is a continuous function ou X, we shall denote by DF' e clifferential map,
and by DF(z)- v its first-order variation at some point z € X, along some
tangent vector v.

When X is a swooth Riemannian manifold, we shall denote by T, X the
tangent space at a point z, and by (-, -}, the sealar product on Ty X defined
by the Ricmannian structure. We shall deunote by D{X) the space of C™
functions on X with compact support, aud by 27(X) the space of distribu-
tions on X. We define the gradient operator V on (X by the identity
(VF(x),v), = DF(x) - v; so VF(x) belongs to T, X, while DF(z) lies in
(T X)". We shall denote by V- the diverpence operator, which is the adjoint
of V on D(X). The gradient operator acts on real- valned functions, while
the divergence operator acts on vector fields. We also dehine the Laplace
operator A hy the identity AF = V- VF. By duality. all these operations

Care extended to D(X). OF course, if X = R™, iben

S OF PTa — , L OF
VE={— o=, Vo= = AF=Y 5
duy day, T_—T o i O

We also denote by D% the Hensian operator on X Of course, if X = R™,
then /7 F(2) cap be identified with the Hessian macns (71 {x)/ Oz, 0x;).
The space of absolutely continuous {with respect Lo Lebesgue measure)
probabilily mweasures on R™ will be denoted by Py (R™) i cau be identified
with a subspace of LY(R™). The space of absoluicly contivuous probability
measures with finite momeuts up to order 2 will be denoved by Py o(R™).

The Alcksandrov Hessian of a convex function ¢ ou B will be denoted
by D%(p‘; it is only delined almost evervwhere in bhe micrior of the domain
of . It should wot be mistaken {or the distributional Hessian of @, denoted
hy D%, The Hessian measure of ¢ will be denoted dety 1i%p. All these
notions will be explained within the text (sec subsections 2.1.3 and 4.1.4).
We shall use conpsistent notations for Laplace operatovs: whe trace of Ui(p
(resp. f)'f),fp) wil be denoted by A g (resp. Apip)

Whenever §2 is an open snbset. of R™ and & € N we denote by CF(12) the
space of funclions « which arce differcniiable up to order &; and, whenever
o € (0,1), we denote by (5%(§2) the space of functions « for which all partial
derivaiives at order k are Holder-continuous with exponeny .



xvi Notation

Whenever (2 is a smooth subset of R™, the group of all diffeomorphisms
s: Q — Q with det(Vs) = 1 will be denoted by G(£2).

We shall refer to a measurable set X C R" as a small set if it has
Hausdorfl dimension at most n — 1.

The vector space of real n x n matrices will be denoted by M, (R). The
trace of a matrix M will be denoted by tr M. The n x n identity matrix
will be denoted by I,,. Whenever M is an element of M, (R), its transposed
matrix will be denoted by MT; thus MT = (mj;) with m{; = m;;. The sets
of symmetric matrices (M7 = M), symmetric matrices with nonnegative
eigenvalues (M > 0), antisymmetric matrices (M7 = —M) and orthogonal
matrices (M M7 = I,,) will be respectively denoted by S, (R), S;(R), A,(R)
and On(R).

Finally, let us say a word about where to find the definitions of the basic
objects in optimal mass transportation: the notations I[x], (g, v), J(p,4),
&, are defined in Theorem 1.3 of Chapter 1; Z(u, v) in formula (5); Wp(u, v)
and T,(p,v) in Theorem 7.3 of Chapter 7.
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Introduction

1. Formulation of the optimal transportation problem

Assume that we are given a pile of sand (say), and a hole that we have to
completely fill up with the sand.

Obviously, the pile and the hole must have the same volume. Let us
normalize the mass of the pile to 1. We shall model both the pile and the
hole by probability measures u, v, defined respectively on some measure
spaces X and Y. Whenever A and B are measurable subsets of X and Y
respectively, p[A] gives a measure of how much sand is located inside A; and
v{B] of how much sand can be piled in B.

Moving the sand around needs some effort, which is modelled by a mea-
surable cost function defined on X x Y. Informally, ¢(z,y) tells how much
it costs to transport one unit of mass from location z to location y. It
is natural to assume at least that ¢ is measurable and nonnegative. One
should not a priori exclude the possibility that ¢ takes infinite values, and
so ¢ should be a measurable map from X x ¥ to RU {+o0}.

Figure 1. The mass transportation problem
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2 Introduction

In this book a central question is the following
Basic problem: How to realize the transportation at minimal cost?

Before studying this question, we have to make clear what a way of
transportation, or a transference plan, is. We shall model transference
plans by probability measures 7 on the product space X x Y. Informally,
dm(z, y) measures the amount of mass transferred from location z to location
y. We do not a, priori exclude the possibility that some mass located at point
r may be split into several parts (several possible destination y’s). For a
transference plan 7 € P(X X Y') to be admissible, it is of course necessary
that all the mass taken from point z coincide with du(z), and that all the
mass transferred to y coincide with dv(y). This means

/ dm(z,y) = du(z / dr(z,y) = dv(y).
More rigorously, we require that
(1) n[A x Y] = u[4], #[X x B] = v|B],

for all measurable subsets A of X and B of Y. This is equivalent to stating
that for all functions ¢, ¥ in a suitable class of test functions,

@ /X _pla) + 0] dnta,y) = /X o(x) du(z) + /Y (y) dv(y)

I general, the natural set of admissible test functions for {y, 1) is L' (dy) x
L(dr), or equivalently L®(du) x L®(dv). In most situations of interest,
this class can be narrowed to just Cp(X) x Cp(Y), or Co(X) x Co(Y); we
shall discuss this more precisely later on.

Those probability measures 7 that satisfy (1) are said to have marginals
j+ and v, and will be the admissible transference plans. We shall denote the
set of all such probability mcasures by

(3 O(p,v)= {7r € P(X xY); (1) holds for all measurable A, B}.

This set is always nonempty, since the tensor product g ® v lies in I(p, »)
(this corresponds to the most stupid transportation plan that one may imag-
ine: any piece of sand, regardless of its location, is distributed over the entire
hole, proportionally to the depth).

We now have a clear mathematical definition of our basic problem. In
this form, it is known as

Kantorovich’s optimal transportation problem:

(4) Minimize I[n)] =/ clz,y)dm(z,y) forme(u,v).
XxY



