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PREFACE

This book has been written primarily for students preparing to become
teachers of secondary school mathematics, although it should also be
of interest to practicing teachers and to undergraduates majoring in
mathematics who wish to review or to extend their background in
geometry. Its purpose is to present a careful axiomatic development
of certain important parts of elementary euclidean and non-euclidean
geometry, and, in so doing, to acquaint the st ident with the axiomatic
method as a general pattern of thought. To some, the word “IFoun-
dations” in the title of a book suggests a boring preoccupation with
details or an intensive belaboring of the obvious. However, to the
prospective reader of this book, I would express both the conviction
that its concern with details, while extensive, is not significantly
greater than that found in the new high school progr’a.ms, and the hope
that such concern is adequately motivated and properly balanced by
exciting glimpses of what lies beyond the bounds of traditional
euclidean geometry.

The book begins with a chapter on the axiomatic method and its
major features, independent of its use in geometry. Then, in Chapter
2, postulates for three-dimensional euclidean geometry are introduced
and the principal results up to, but not including, the measurement of
volume are carefully developed. Chapter 3, though it contains noth-
ing original, is perhaps the most novel in the book. It is devoted to
an axiomatic development of the simpler aspects of four-dimensional
euclidean geometry, and is intended to give the student practice in
the axiomatic method in a setting, essentially as simple as the geometry
of three dimensions, but in which he has no familiarity with the main
results to guide or to hinder him. Chapter 4 provides an introduction
to plane hyperbolic geometry and carries the development as far as
the measurement of area. I‘inally, in Chapter 5 the question of the
consistency of hyperbolic geometry is considered; and by describing
in detail a model in the euclidean plane in which each of the postulates
of hyperbolic geometry can be verified, it is shown that hyperbolic
geometry is relatively consistent.

Those who are familiar with the geometry texts prepared by the
School Mathematics Study Group will find a striking resemblance
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between the postulates employed in those books and the postulates
adopted here. It was my great good fortune to participate in the
writing of the School Mathematics Study Group’s “Geometry with
Coordinates,” and the present book owes much to the stimulating
contacts I had with my colleagues in this project. Of course, the
School Mathematics Study Group has no responsibility for what I have
written here, and my obvious indebtedness to it does not imply any
indorsement of my work. However, it is a pleasant obligation on my
part to acknowledge the kindness of the Group and its Director,
Professor E. G. Begle, in permitting me to employ its wording of a
number of postulates and theorems and to use, without change, occa-
sional passages which I wrote during the preparation of ‘“Geometry
with Coordinates.”’ 2

The author of any textbook owes much to his own teachers, col-
leagues, and students; and to all who have assisted me, consciously or
unconsciously, in the preparation of this book, I express my apprecia-
tion. Finally, it is a pleasure to acknowledge the welcome assistance
of Miss Maxine Winterton, who typed the manuscript, and of my wife,
Ellen, and my secretary, Mrs. Patricia Everts, who shared the task of
reading the proof.

C. R. Wylie, Jr.
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1

THE
AXIOMATIC
METHOD

1.1 Introduction. The origin of the discipline we call geometry is
clearly evident in the name itself, which derives from the Greek words
ge, meaning the earth, and metrein, meaning to measure. In the begin-
ning geometry was, indeed, the art (not science) of earth measurement
and consisted of a disorganized collection of rules for computing simple
areas and volumes and carrying out a few elementary constructions.
Such results were the fruits of long centuries of trial and error by the
Babylonians and the Egyptians who, in the dawn of civilization, had
to develop practical procedures for such things as land surveying, the
construction of granaries and canals, and the erection of tombs and
temples. Some of this information was correct and some incorrect
though useful as an approximation, but all had at best only the sanc-
tion of plausibility. In other words, for the first two thousand years
or so of its existence, geometry was a body of empirical knowledge
obtained inductively from a consideration of many special cases and
completely unsupported by anything resembling logical proof.

Then in the millennium immediately preceding the Christian era,
geometry underwent a remarkable change. The Greeks, inclined by
temperament toward philosophy and abstraction and blessed with
security and leisure to follow these inclinations, took the geometry
of the Egyptians and recast it in the form of a deductive science.
Beginning with Thales (Tha'-lez, 640-546 B.c.), this transformation
culminated in the work of Euelid (365?-275? B.c.), whose “Elements’’
presented the sum total of current geometrical knowledge, not as a
disjointed collection of empirical results, but as a well-organized chain
of theorems following inevitably by the laws of logic from a few simple 1
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initial assumptions. Eueclid’s “Elements” remains the most famous
and most important textbook ever written. Not only did it perma-
nently establish the character of geometry as a deductive science, it
also exemplified a pattern of logical organization so effective and so
elegant that today most of mathematics is constructed according to
the same plan. In major areas of other disciplines, such as biology,
chemistry. economies, physics, and psychology, the goal of scholars is
still to achieve a comparable logical structure.

The abstract logical plan which Euelid conceived and so ably illus-
trated in his “Elements” we now refer to as the axiomatic method,
and any particular instance of it we call an axiomatic system. The
impact of the axiomatic method upon mathematics, and upon other
sciences as well, has been so profound that not only the scholar who
must be prepared to use it in his own work but also the intelligent
layman who would achieve some understanding of the nature of scien-
tific thought must be familiar with it. Accordingly, we shall devote
the balance of this chapter to a discussion of the axiomatic method
and its major features.

1.2 Inductive and Deductive Reasoning. A careless reading of
the preceding section might well leave one with the impression that
inductive reasoning is primitive and unscientific and that deductive
reasoning is the only mode of thought appropriate to genuine scien-
tific inquiry. Nothing could be further from the truth. Although this
book is devoted almost exclusively to instances of deductive reasoning,
we should understand from the outset the nature of induction and the
important role which it plays in every science, including mathematics.

Induction can be described briefly as the process of inferring general
properties, relations, or laws from particular instances which have been
observed. Deduction, on the other hand, is the process of reasoning
to particular conclusions from general principles that have been
accepted as the starting point of an argument. Both induction and
deduction have their merits and their defects, and neither by itself is
sufficient to support genuine scientific progress.

Induction has at least two obvious weaknesses. In the first place,
no matter how many completely correct observations have been made,
unless every possible instance has been examined, no generalization
can be made with certainty, because any of the uninvestigated cases
may contradict it. Second, the assumption that the observations
actually made have been made with perfect accuracy is often false,
so that in many cases there is not exact information on which to base
a generalization.

To illustrate, if we evaluate the expression n2 — n + 17 for the first

|
|
1



Sec. 1.2 The Axiomatic Method 3

few positive integers we obtain the following table:

n | nt—n+4+17

17
19
23
29
37
47
59
73
89
107

SO OO W -

—

Here, we are in the fortunate position of having a set of completely
accurate observations from which to generalize, and by induction we
may be led to any of several plausible conjectures. For instance, from
the particular cases before us, we may draw the almost obvious con-
clusion that for every positive integer n the expression n? — n + 17
is a number which is odd. Or, taking a somewhat closer look, we
may conclude further that for every positive integer n the expression
n? — n + 17 is a number which ends in 3, 7, or 9.  Or, observing that
17, 19, 23, . . ., 107 are all prime numbers, we may infer the still
more remarkable property that n2 — n + 17 is a prime number for
every positive integer n. Each of these conclusions is strongly sug-
gested by the data. But are they all correct, and if so, how can we
be sure? Trying additional values of n may answer the question, for
if we find for some n that n2 — n + 17 is not odd, or does not end in
one of the digits 3, 7, or 9, or is not a prime number, then the corre-
sponding inference is immediately overthrown by that one counter-
example. But if we investigate additional cases and find them all
consistent with our conjectures, the issue remains in doubt. We may
feel that the additional supporting examples increase the probability
that our generalizations are correct, but we still must admit the possi-
bility that among the cases not yet examined there may be at least one
which will contradict, and hence overthrow, one or more of our con-
jectures. Specifically, if we extend our table a bit, we find

n | n?—mn+17
11 127
12 149
13 173
14 199
15 227
16 257
17 289
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Through n = 16, the entries support each of our conjectures. How-
ever, for n = 17 we find that n> — n + 17 = 289 is not a prime but
! in fact is equal to (17)%.  Thus our third conjecture is false, while the
‘ other two, though perhaps more plausible because of the additional
supporting evidence, remain uncertain.

It is precisely at this point that deduction “comes to the rescue”
and ‘“‘takes over” from induction. When further search for a counter-
example seems fruitless and the evidence of a sufficient number of
supporting examples convinces a mathematician that a conjecture is
probably true, he abandons induction and tries to prove the conjecture
by deriving or deducing it from more fundamental principles. In
particular, though we shall not digress to do so, it is easy to deduce
from the principles of arithmetic that for every positive integer n the
expression n? — n + 17 is a number which is odd and which moreover
ends in 3, 7, or 9.

On the other hand, deduction has its weaknesses. In the first place,
deduction can only provide us with conditional statements of the form
“If something is true, then something else is true.” It is essentially
unconcerned with whether or not the statements with which an argu-
ment begins are true or false. Second, deduction is, in itself, incapable
of providing us with either the results which we hope to prove or the
initial statements from which we propose to evolve a proof.

It is here that induction steps in and saves deduction from its
inherent sterility. It is induction that suggests the theorems which
deduction subsequently so painstakingly tries to prove. It is indue-
tion, too, which provides us with the insights that we formalize in the
principles on which our proofs are based. And insofar as these princi-
ples have any claim to truth, it is induction which ultimately supports
that claim. Without the body of geometric information accumulated
by the Babylonians and the Egyptians and his Greek predecessors,
Euclid would have had no material to organize, no results to set in
logical order, no initial principles from which to reason. The proofs
of theorems are achievements of deductive reasoning, but theorems
themselves are the fruits of induction, of intuition, of creative insight
habitually examining every special case for suggestions of more general
relations.

On its lower levels, induction is merely the tedious cataloging of
observations; at its best, it is the imaginative recognition, through a
thousand irrelevancies, of the essential nature of a situation. With-
out induction, deduction can only wait, idly, for something to prove.
Without deduction, induction is always unsure of itself, its inferences
suspect, its insights, no matter how brilliant, vulnerable to counter-
examples and disproof. And in more practical terms, without skill in
both induction and deduction, that is, without both intuition and a
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clear feeling for proof, no student of mathematics is more than margin-
ally prepared for his work.

The cooperative relation between induction and deduction is roughly
comparable to the relation between mathematics and the other sci-
ences. Historically, mathematics developed out of man’s concern
with physical problems. . And though mathematics is ultimately a
construction of the mind alone and exists only as a magnificent col-
lection of ideas, from earliest times down to the present day it has
been stimulated and inspired and enriched by contact with the exter-
nal world. Its problems are often idealizations of problems first
encountered by the physicist or the engineer, or, more recently, by
the social scientist. Many of its concepts are abstractions from the
common experience of all men. And many areas of mathematics stem
originally from the needs of scholars for more powerful analytical tools
with which to pursue their investigations of the world around them.
Surely, without contact with the external world, mathematics, if it
existed at all, would be vastly different from what it is today.

But mathematics repays generously her indebtedness to the other
sciences. At the mere suggestion of a new problem, mathematics sets
to work developing procedures for its solution, generalizing it, relating
it to work already done and to results already known, until finally it
gives back to scholars in the original field a well-developed theory for
their use.

Oftentimes mathematics outruns completely the demands of the
physical problem which may have stimulated-it, and careless erities
scoff at its “pure’” or “abstract’” or “useless” character. Such criti-
cism is absurd on two quite different counts. In the first place, all
mathematics worthy of the name is pure or abstract or even, in a
certain sense, useless, just as poetry and music and painting and
sculpture are useless except as they bring satisfaction to those who
create and to those who enjoy. It is no more appropriate to criticize
mathematics for possessing the attributes of one of the creative arts
than it is to criticize the arts themselves, unless it be that perhaps
the number of those who find enjoyment in mathematics, though con-
siderable, is less than those who enjoy the more conventional arts.
Then in the second place, by a remarkable coincidence which is almost
completely responsible for the existence of all present-day science and
technology and which has no counterpart in the arts, even the most
abstract parts of mathematics have turned out again and again to be
highly “practical,” as science, becoming ever more sophisticated, finds
that it needs mathematical tools of greater and greater refinement.

As we now begin to employ the deductive method in our investi-
gation of one small part of the great field of mathematics, it is impor-
tant that we do not lose sight of the great significance of the inductive
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method, which suggested most, if not all, of the results with which we
shall be concerned. And it is important, too, that even while we
remain thoroughly committed to the conviction that geometry is a
branch of pure mathematics, we never forget that it had its origins in
the physical world, owes much of its vitality to its contacts with the
physical world, and, properly understood, is a tool of magnificent
power and effectiveness for the study of the physical world.

EXERCISES

Prove that for all integral values of n, n2 — n + 17 is odd and ends in
one of the digits 3, 7, or 9.

What do you think is the most plausible value for the next number in
each of the following sequences?

(a) 0,0,0,0, ... ) 1,0,
(c) 1,:2,3,4, 1 14 (@) 1,2

Can you prove your conjectures” Can you construct expressions which
will yield the given values for n = 1, 2, 3, and 4 but in each case will
vield the value 7 when n = 5?
Evaluate 27 — 1425 + 492% — 392 for £ =0, +1, +2, ... What
generalizations occur to you? Are your inferences correct for all values
of 7 Are they correct for all integral values of z?
Determine the sum of the first ¥ odd positive integers for a number of
values of k. What generalizations occur to you? Are your inferences
correct for all positive integers k?
Determine the sum of the cubes of the first & positive integers for a num-
ber of values of k. What generalizations occur to you? Are your
inferences correct for all positive integers k?
Evaluate n* — 39n 4 421 for a number of integral values of n. What
generalizations occur to you? Are your inferences correct for all integral
values of n?
Let a sequence of integers ui, us, us, . . . , u, . . . be defined by the
conditions

u; =1

Uy = 1

Unt2 = Uns1 + 2Un no=41,2;38 +

What general properties of this sequence occur to you? Let II, denote
the product of the first » numbers in the sequence and evaluate the

expression
JLE

I—IkIIr—k O0<k<r

for various values of » and k. What generalizations occur to you?
Perform the following geometric “‘experiment” several times: Construct
a quadrilateral of any shape and determine the midpoints of its sides.
What properties of the four midpoints occur to you?
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9. Perform the following geometric “‘experiment’ several times: Construct
two triangles so related that the lines joining corresponding vertices
pass through the same point, and locate the point of intersection of the
lines determined by corresponding sides of the two triangles. What
properties of the three points of intersection occur to you?

10. Perform the following geometric ‘“‘experiment” several times: Let /; and
1, be two intersecting lines, and on each choose three points, say 41, By,
C, and A, B, C, distinet from the intersection of [; and /.. Deter-
mine the intersection of each of the following pairs of lines:

‘4132 and AgBl. 4’1233 and AsBz, AI.B3 and AaB1

What properties of the three points of intersection oceur to you?

11. Repeat the “experiment’” described in Exercise 10, only this time let
the points A;, By, Cy and A, B, C, be chosen so that the lines 4,45,
B:B,, C,C, all pass through the same point. What properties of the
three points of intersection defined in Exercise 10 occur to you in this
case”

12. Perform the following geometric ‘‘experiment’ several times: On any
circle choose any six points, Py, P, Pj, P, P; Ps, and determine the
intersection of each of the following pairs of lines:

PlP;)aIldP4P5, Pzpaa,ndpsl')s, P;JﬂandPsP;

What properties of the three points of intersection occur to you? Can
vou think of a generalization of this “experiment’ to curves other than
circles?

13. Perform the following geometric ‘“‘experiment” several times: Draw three
circles, €y, C,, and (3, so related that each one intersects each of the
others at two distinct points. Draw the lines determined by the points
of intersection of each pair of circles. What properties of the three lines
occur to you? Can vou think of a generalization of this “experiment”
to curves other than circles?

14. Perform the following geometric “‘experiment’” several times: Construct
a triangle of any shape and on each of its sides construct an equilateral
triangle having that side as base. For each of the three equilateral
triangles, determine the point of intersection of its medians. What
properties of these three points occur to you? Can you think of a
generalization of this “experiment’” to polygons other than triangles?

15. Discuss the following “proof” that 1 is the largest positive integer:

“If n is any positive integer except 1, it is obvious that n2 is an integer
which is still larger. Hence no positive integer different from 1 can be
the largest and so, perforce, 1 must be the largest positive integer.”
What theorem, if any, is established by this argument?

16. Discuss the “moral,” if any, to the following anecdote:

An engineer, a physicist, and a mathematician were once riding
together through the sheep country of Montana. Glancing across the
plains, the engineer saw a small flock of sheep and remarked, “Well, I
see there are some black sheep in Montana.”” The physicist, looking
out and observing that there was but a single black sheep in the little
flock, rebuked the engineer, saying, “As scientists, don’t you think we
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should say simply that there is at least one black sheep in Montana?”’
Then the mathematician, having made his survey of the flock, said,
“Gentlemen, it appears to me that all we are entitled to assert is that
there is at least one sheep in Montana which is black on one side.”
17. Discuss the following statement of the principle of induction:

“If certain members of a class are observed to have a given property
and if the rest of the members of the class have this property, then all
members of the class have the given property.”

Discuss each of the following quotations:

18. “We see that experience plays an indispensable role in the genesis of
geometry; but it would be an error then to conclude that geometry is
even in part an experimental science.”

Henri Poincaré, “Science and Hypothesis,” p. 79 [1].*

19. “As we emphasize the deductive structure of our science [mathematics]
and of acceptable proof, let us not lose sight of the fact that many of the
most significant results that we prove were arrived at by guess-work, by
intuition, by brilliant insight.”

Mina Rees, “The Nature of Mathematics,” Science, Oct. 5, 1962, p. 11
[2].

20. ““I address myself to all interested students of mathematics of all grades

and I say: Certainly let us learn proving, but also let us learn guessing.”
George Polya, “Induction and Analogy in Mathematics,” p. v [3].

1.3 Axiomatic Systems. Before we can begin to organize our
knowledge of geometry into a logical, deductive structure, we must
first become familiar with the general features of the kind of organiza-
tion we hope to achieve. Briefly, an axiomatic system consists of the
following:

1. A set of undefined terms which forms the basis of the necessary

technical vocabulary

A set of unproved initial assumptions

The laws of logic

4. The body of theorems, expressing properties of the undefined
objects, which are derived from the axioms by the laws of logic

At first glance it might appear that in any logical discussion every
term should be carefully defined, but a moment’s reflection shows that
this is impossible! New terms can be defined only by means of others
already defined and understood. Thus, attempting to define every
term either leads us to some first word, for whose definition no other
words are available, or else leads us in circles in which, in effect, we
define A in terms of B, B in terms of C, and C in terms of A! How

* Bracketed numbers refer to full bibliographic credits listed at the end of the
chapter.
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common the latter process is can be seen by looking up almost any
word in a dictionary, then looking up the words used in its definition,
and so on. Usually in just a few steps one reaches a definition in
which the original word reappears! I‘or instance, in one of the stand-
ard unabridged dictionaries we find the following chain of definitions
purporting to give meaning to the term magnitude:

Extent .— Size
X S5l
Magm:ude s Extent
v, Sizet——» '
Sk o Magnitude

In the development of an axiomatic system the impossibility of
defining every term is explicitly recognized and certain technical terms
are deliberately left undefined. The vocabulary of the discussion then
consists of these undefined terms, other technical terms defined by
means of them, and the nontechnical vocabulary of everyday discourse
which, of course, we implicitly assume to be available.

Similarly, it might be thought that in any scientific discussion every
assertion should be carefully proved, but this, too, is impossible. If we
attempt it, we either embark upon an infinite regression, in which we
assert that

A 1s true because B is true.
B is true because C is true.
C is true because D is true.

or else we reason in a circle and assert, in effect, that

A is true because B is true.
B is true because C is true.
C is true because A is true.

The impossibility of proving every statement is also explicitly recog-
nized in the construction of an axiomatic system, and’ certain state-
ments, nowadays referred to interchangeably as axioms or postulates,
are accepted without proof as a necessary starting point for the
discussion.

Occasionally it is said that axioms are facts which are taken for
granted because their truth is so obvious that it needs no proof.
Since the purpose of an axiomatic system is to provide an orderly
development in which complicated and difficult results are deduced
from simpler and more fundamental ones, the initial assumptions are
often so simple that they do, indeed, seem obviously true, and on
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psychological and pedagogical grounds this is probably desirable.
Moreover, in choosing among various sets of axioms which may
serve equally well as the starting point of a deductive development, it
is eminently proper to choose the one which seems most natural or
most plausible. Nevertheless, the ultimate reason for accepting a set
of axioms without proof is simply that no other course is possible and
has nothing to do with the obviousness or intuitive appeal of the indi-
vidual axioms. In fact, in Chap. 4, in order to make possible our
development of plane hyperbolic geometry we shall have to accept
(without proof, of course) a new parallel axiom which not only is not
obvious but in fact contradicts all our intuitive notions of parallelism.

It is important to observe that although the objects and relations
with which an axiomatic system deals are ultimately undefined, they -
are certainly not meaningless. In fact, the axioms make statements
about them, and by means of the accepted laws of logic additional
results, or theorems, are proved to be true about them. Thus, by the
processes of deductive reasoning, more and more properties of the
objects of the system become established, not just with experimental
accuracy, byt with the certainty that they follow as logical conse-
quences of the initial assumptions.

It is sometimes said that a mathematician working with an axio-
matic system is merely playing a meaningless game with undefined
pieces subject to arbitrary rules, and in a very real sense this is true.
However, it is not the whole truth, and without further qualification it
is only a caricature of the truth. For as we pointed out in the last
section, the construction of an axiomatic system is usually motivated
by ideas drawn from the external world. The undefined terms are
often idealizations suggested by objects in the world of our physical
experience, and the axioms are abstract formulations of the funda-
mental observed properties of these objects. To abandon contact
with the ‘“real” world in this fashion may seem foolish to those of a
practical turn of mind, but it is highly practical. It allows the instru-
ments of the mind to replace the instruments of the hand and eye in
the study of the phenomena of original interest. And if the initial
abstraction from the world of experience was made with appropriate
care, the results deduced from the axioms by the laws of logic can be
transported back into the “‘real” world either as properties supported
now by deduction as well as induction or often as new properties that
were previously unknown. Moreover, the fact that an axiomatic Sys-
tem deals with undefined things means, in effect, that as we work with
it we are “killing many birds with one stone.” TFor an abstract system,
though it may have been motivated or suggested by a specific set of
objects or facts, is bound to no particular interpretation. Its results
can be applied equally well to any system whose elements can be identi-




