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Preface

The nascent field of regenerative medicine has advanced at a rapid pace, and clinical trials
are ongoing to assess the safety and efficacy of stem cell-based therapies in indications
that range from congestive heart failure to Crohn’s disease. However, in general there is a
lack of understanding of the specific mechanisms of action, and application of these new
biologic products faces special challenges.

Four key areas in regenerative medicine are highlighted in this book: (i) cell-fate deter-
mination, (ii) regeneration, (iii) designer cells, and (iv) translation of cell-based therapies.
The utility of stem cell-based therapies relies upon efficient manipulation of cell fates,
not only to generate sufficient quantities of the desired cell type for transplantation but
also to prevent tumor formation from residual, undifferentiated cells. The biologic mecha-
nisms related to cell-fate determination will be presented in depth to provide the necessary
background. While the focus of stem cell-based therapies has traditionally been on trans-
plantation and engraftment, this is not the only paradigm. Instead, some therapies may
stimulate regeneration in the host tissue through activation of endogenous stem-cell pools.
In this volume, the use of mesenchymal stem cells (MSCs) in the context of wound healing
and regeneration will be discussed. In addition, in recognition of the revolutionary advances
in patient-derived induced pluripotent stem cells (iPSCs) and reprogramming of somatic
cells, the issue of customizing iPSCs for research and clinical applications will be dis-
cussed. A myriad of technical and conceptual issues remain to be overcome before the full
potential of iPSC technologies is realized, which will require an interdisciplinary approach.
Thus, this book pays particular attention to the use of small molecules and biomaterials in
addressing current challenges. Lastly, an overview of the practicalities related to translation
of stem-cell therapies for clinical use will be provided.

This book is intended for those with interests ranging from basic developmental biology
to stem-cell therapies. Biomedical researchers, clinicians, managers in biotechnology, and
undergraduate and graduate students interested in stem cells and cell-based therapies will
find this book useful in summarizing the most recent developments in stem-cell research.

The intrigue surrounding stem cell-based therapies lies not only in the treatment of
chronic diseases but also in the potential to cure them. Therefore, regenerative medicine is
rapidly moving to the forefront of many therapeutic areas, from cancer to heart disease. This
book aims to summarize the collective knowledge of active researchers, illustrate current
perspectives on the most pressing obstacles to clinical application, and serve as a guide to
what lies ahead.

Charles C. Hong, MD, PhD
Ada S. Ao, PhD
Jijun Hao, PhD
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1

Wnt Signaling in Regulation
of Stem Cells

David T. Paik and Antonis K. Hatzopoulos
Department of Medicine, Vanderbilt University, USA

1.1 Overview of Wnt Signaling

The Wnt signaling pathway is classically divided into so-called canonical and noncanonical
branches based on the activation of specific intracellular components. Canonical Wnt sig-
naling is activated when Wnt ligands bind to the Frizzled (Fzd) family of 7-transmembrane
domain receptors and co-receptors, such as low-density lipoprotein receptor-related protein
(LRP) 5/6, Ryk, and Ror2 [1-4]. This disrupts the formation of the p-catenin destruc-
tion complex, which consists of the scaffolding protein Axin, the Adenomatous polyposis
coli (APC) protein, Dishevelled (Dsh), casein kinase I (CK-Ia), and glycogen synthase
kinase-3Inase (CK). The dissociation of the destruction complex leads to stabilization of
cytoplasmic iationein, which translocates to the nucleus to interact with TCF/LEF tran-
scription factors and initiate transcription of canonical Wnt signaling target genes, such as
c-Mye, Axin2, and Snail [5-7]. When canonical Wnt signaling is turned off, the destruction
complex phosphorylates -catenin for ubiquitin-mediated proteosomal degradation [8].
Noncanonical Wnt signaling pathways are P-catenin-independent and are mediated
through other intracellular proteins [1-4, 9, 10]. In the Wnt/JNK pathway, binding of
Wht to Fzd receptors activates small-GTPases, RhoA, and Rac through recruitment of Dsh,
which thereby activate Rho kinase and c-Jun N-terminal kinases (JNK). In the Wnt/Ca +2
pathway, binding of Wnt to Fzd receptors increases intracellular Ca®* levels, activating

Chemical Biology in Regenerative Medicine: Bridging Stem Cells and Future Therapies, First Edition.
Edited by Charles C. Hong, Ada S. Ao, and Jijun Hao.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.



2 Chemical Biology in Regenerative Medicine

calcium/calmodulin-dependent kinase (CaMK) II, protein kinase C (PKC), and the pro-
tein phosphatase calcineurin (CaCN) to trigger dephosphorylation of NF-AT transcription
factors. Thus activated NF-AT transcription factors translocate to the nucleus to stimulate
transcription of their target genes [11]. Intriguingly, noncanonical Wnt signaling has been
shown to inhibit canonical Wnt signaling in various mechanisms [10, 12, 13].

To date, 19 Wnt ligands and 10 Fzd receptors have been identified. The 19 Wnt genes fall
into 12 conserved Wnt subfamilies, which exist in most mammalian genomes, including
the human genome [14]. Different combinations of individual Wnt ligands, receptors, and
co-receptors allow differential activation of B-catenin-dependent/canonical Wnt signaling,
BWnt signaling, ligands, receptors, and/or Wnt signaling in a cellular context-dependent
manner.,

In the past 2 decades, the connection between Wnt signaling and human disease has been
well established. Numerous components of the pathway have been implicated in cancer,
obesity, osteoporosis, diabetes, and cardiovascular diseases [15]. Interestingly, Wnt signal-
ing components are also critical regulators of stem and progenitor cells in various organs and
tissues. A thorough understanding of the Wnt signaling pathway in the regulation of stem
cells will be instrumental in translating the potential of stem cells to effective therapeutic
solutions for human degenerative diseases or to the restoration of organ function after injury.

1.2 Wnt Signaling in Embryonic Stem Cells

Whnt signaling has been implicated in the maintenance of the pluripotency and differentiation
potential of embryonic stem cells (ESCs). A number of studies have demonstrated that
individual Wnt ligands can stimulate self-renewal of ESCs [16—-18]. Activation of the
canonical Wnt pathway complements the LIF/JAK-STAT pathway via upregulation of the
Stat3 gene to inhibit ESC differentiation [16]. Paracrine and autocrine Wnt signaling is
essential not only for self-renewal of mESCs but also to inhibit differentiation into epiblast
stem cells (epiSCs) [7]. Accordingly, mutations in the pn of the io destruction complex
APC protein increase p-catenin levels, diminishing the differentiation capacity of mouse
ESCs (mESCs) into the three germ layers [19].

In contrast, whether Wnt signaling promotes self-renewal or differentiation of human
ESCs (hESCs) has been rather controversial. In the presence of supportive feeder cells or a
conditioned medium (CM) rich in factors preventing differentiation, Wnt3a enhanced self-
renewing proliferation of undifferentiated hESC H1 cells. In the absence of CM, however,
activation of Wnt signaling accelerated both proliferation and differentiation of hRESCs [20].
The canonical Wnt ligand Wntl displayed the same effects on hESCs as Wnt3a, while the
noncanonical Wnt ligand Wnt5a did not affect the proliferation of hESCs, indicating that f-
catenin-dependent canonical Wnt activation is responsible for enhanced hESC proliferation
[21,22]. Activation of the canonical Wnt pathway by 6-bromoindirubin-3’-oxime (BIO), a
specific inhibitor of glycogen synthase kinase 3 (GSK3), produced comparable results in
maintaining the undifferentiated phenotype of hESCs marked by sustained expression of the
pluripotent transcription factors OCT3/4 (POUSF1), REX 1, and NANOG and by prevention
of the epithelial-mesenchymal transition (EMT) of hESCs [23, 24]. In complementary
fashion, addition of the Wnt inhibitors Sfrp-1, Sfrp-2, and Sfrp-4, singly or in combination,
promoted differentiation of hESCs [22].
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However, other studies have reported that canonical Wnt activation disrupted hESC
self-renewal and promoted differentiation. Specifically, conditional activation of stabilized
p-catenin in KhES-1 and KhES-3 lines resulted in downregulation of the pluripotent markers
NANOG, SOX2, and POUSFI and upregulation of the mesodermal marker T Brachyury,
followed by induction of the ventral mesodermal and endothelial marker KDR (VEGFR2)
and the early cardiac marker NKX2.5 [25].

Experimental evidence also suggests that canonical Wnt signaling interacts with
Activin/Nodal and bone morphogenetic protein (BMP) signaling pathways to specify
differentiation lineages in hESCs. Canonical Wnt activation induced Activin/Nodal and
BMP signaling to promote posterior Primitive Streak (PS) and mesoderm differentiation
of hESCs. Synergistic interaction between Wnt and Activin/Nodal pathways was shown
to be required for anterior PS and endoderm specification, while BMP and MAPK signal-
ing antagonized it [25]. Recent studies have also shown that hESCs treated with the Wnt
inhibitor IWP are maintained as pluripotent, with the ability to differentiate into neural cells
[26]. Furthermore, Wnt3a-treated hESCs acquired PS-like characteristics and differentiated
into mesodermal and endodermal cells [26].

It is noteworthy that the effects of Wnt3a on hESCs and mESCs differ significantly. In
mESCs, Wnt3a prevented progression of mESCs to EpiSCs, while in hESCs Wnt3a facil-
itated their differentiation into mesodermal and endodermal lineages [7, 26]. In another
study, the pluripotent marker OCT4 in hESCs was shown to repress p-catenin during
self-renewal, whereas knockdown of OCT4 activated canonical Wnt signaling [27]. In sup-
port of these studies, Wntl-treated hESCs displayed induced differentiation to hemogenic
endothelial cells, while treatment with the Wnt inhibitor Dkk1 reduced this differentiation
potential [28].

The apparently contradictory reports of Wnt signaling in hESC self-renewal and dif-
ferentiation may be due to the epiblast origin of the various hESC lines tested [25]. It
has also been proposed that the effects of Wnt signaling on hESCs are highly sensitive
to the level of Wnt activation [26, 27]. Therefore, it is likely that apparently contradictory
results regarding the role of Wnt signaling in human ESC pluripotency, proliferation, and
differentiation reflect the heterogeneity of the corresponding lines and their sensitivity to
canonical Wnt signaling levels.

1.3 Whnt Signaling in Cardiovascular Progenitor Cells and
Cardiomyocyte Differentiation

Wnhit signaling also plays important roles in the maintenance and expansion of cardiovascu-
lar progenitor cells and in their differentiation into endothelial and cardiomyocyte lineages
[2, 10, 11]. The mammalian heart is one of the first organs to form during embryogenesis
and Wnt signaling has been implicated in all phases of cardiogenesis. Initially, canonical
Wnt signaling is necessary for the formation of mesodermal progenitor cells, but it must
then be suppressed in order for mesoderm progenitors to yield cardiac progenitor cells
(CPCs) [11]. Subsequently, noncanonical Wnt signaling is necessary for the specification
of CPCs. Wnt5a, a noncanonical Wnt activator, is upregulated by the mesoderm-specific
transcription factor Mesp-1 to promote formation of CPCs [29]. Other studies have shown
that intrinsic Wnt2 expression in mouse ES cells is essential for efficient cardiomyocyte
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differentiation and that exogenous Wnt2 promotes cardiomyocyte differentiation. Inter-
estingly, Wnt2 induced cardiogenesis through activation of the noncanonical JNK/AP-1
pathway [30]. After CPC specification, canonical Wnt signaling activation stimulates pro-
liferation of Isl1 ¥ CPCs, whereas subsequent Dkk1 inhibition of canonical Wnt signaling
and noncanonical Wnt activation by Wntl1 are required for cardiomyocyte differentiation
[31,32].

The role of Wnt signaling and the effects of Wnt signaling manipulation during heart
development have been well documented in various animal models. In mouse embryos,
deletion of B-catenin in the definitive endoderm led to formation of multiple hearts along
the anterior—posterior (A/P) axis, as one of the earliest pieces of evidence to implicate Wnt
signaling in the endoderm in the induction of precardiac mesoderm [33]. Notably, the super-
numerary hearts followed the ectopic expression patterns of BMP2. Ectopic cardiac tissue
also formed in zebrafish embryos with overexpression of the BMP antagonist Gremlin2,
while Gremlin2 morphants exhibited a rise in the intracellular levels of f-catenin, suggest-
ing a crosstalk between Wnt and BMP signaling during cardiac development [33,34]. In
chick embryos, Crescent, a Frizzled-related protein that inhibits Wnt8c, is expressed in the
anterior endoderm during gastrulation, while Wnt3a and Wnt8c expression is localized to
the primitive streak and posterior lateral plate. Dkk1 induces cardiac gene expression in
the posterior lateral plate mesoderm, while ectopic Wnt activation in the anterior meso-
derm inhibits cardiac formation. Therefore, inhibition of Wnt signaling in chick embryos
promoted heart formation in the anterior lateral mesoderm, supporting a model that car-
diogenesis initially requires high levels of BMP but low canonical Wnt activity [35]. In
Xenopus embryos, Wnt6 was found to be expressed in tissues close to and inside the
developing heart and to be required to restrict heart development, since the absence of
Wnt6 led to an abnormally large heart [36]. Intriguingly, Wnt6 is not required during the
gastrulation stage but rather in the later stages of organogenesis that precede the differen-
tiation of cardiogenic mesoderm into myocardium. Overexpression of Wnt6 reflected such
a phenotype through the activation of p-catenin-dependent/canonical Wnt signaling, which
repressed cardiogenic transcription factors such as Gata6 and Mlc2. Strp-1, an endogenous
Wnhnt inhibitor, is strongly induced in differentiating cardiomyocytes and participates in a
negative-feedback regulatory loop of Wnt signaling in regulating the cell fate of cardiac
mesoderm [37].

Later studies reinforced a biphasic role for canonical Wnt signaling in cardiac specifica-
tion in zebrafish and mice. For example, it appears that f-catenin-dependent Wnt signaling
before gastrulation promotes cardiac differentiation while inhibiting heart formation during
gastrulation [38]. Early treatment of mESCs with Wnt3a induced mesoderm specification,
which activated a feedback loop that subsequently repressed the Wnt pathway, which in
turn increased cardiac differentiation. Late activation of f-catenin in mESCs, on the other
hand, repressed cardiac differentiation. Overexpression of the noncanonical Wnt ligand
Wntl1, which may inhibit canonical Wnt signaling, promoted cardiac differentiation dur-
ing early stages but repressed it in later ones. Moreover, canonical Wnt signaling in the
early stages of embryoid body (EB) formation induced cardiac differentiation but sup-
pressed hematopoietic and vascular cell lineages. Activation of canonical Wnt signaling
in the later stages of EB formation, however, inhibited cardiac formation and induced
expression of hematopoietic and vascular genes through the suppression of BMP signaling
[39]. Such results highlight the strict temporal and spatial requirement of Wnt signaling



