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Preface

The subject of this book is complex analysis in several variables and its connections
to partial differential equations and to functional analysis. The first sections of each
chapter contain prerequisites from functional analysis, Sobolev spaces, partial differ-
ential equations and spectral analysis, which are used in the following sections de-
voted to the main topic of the book. In this way the book becomes self-contained, with
only one exception, where we do not provide all details in the proof of the general
spectral theorem for unbhounded self-adjoint operators.

We concentrate on the Cauchy-Riemann equation (9-equation) and investigate
the properties of the canonical solution operator to d, the solution with minimal L?-
norm and its relationship to the 3-Neumann operator, The first chapter contains a dis-
cussion of Bergman spaces in one and several complex variables, including basic facts
on Hilbert spaces. In the second chapter the solution operator to d restricted to holo-
morphic L2-functions in one complex variable is investigated, pointing out that the
Bergman kernel of the associated Hilbert space of holomorphic functions plays an im-
portant role. We investigate operator properties like compactness and Schatten class
membership, also for the solution operator on weighted spaces of entire functions
(Fock spaces). In the third chapter we generalize the results to several complex vari-
ables and explain some new phenomena which do not appear in one variable.

In the following we consider the general 9-complex and derive properties of
the complex Laplacian on L*-spaces of bounded pseudoconvex domains and on
weighted L2-spaces. For this purpose we first concentrate on basic results about dis-
tributions, Sobolev spaces, and unbounded operators on Hilbert spaces. The key
result in J.J. Kohn’s far-reaching method is the Kohn—Morrey formula, which is pre-
sented in different versions, Using this formula the basic properties of the 6-Neumann
operator - the bounded inverse of the complex Laplacian — are proved. In recent
years it has turned out to be useful to investigate an even more general situation,
namely the twisted 9-complex, where 0 is composed with a positive twist factor. In
this way one obtains a rather general basic estimate, from which one gets Hérman-
der’s L*-estimates for the solution of the Cauchy-Riemann equation together with
results on related weighted spaces of entire functions, such as that these spaces are
infinite-dimensional if the eigenvalues of the Levi matrix of the weight function show
a certain behavior at infinity. In addition, it is pointed out that some L*-estimates for
0 can be interpreted in the sense of a general Brascamp-Lieb inequality.

The next chapter contains a detailed account of the application of the d-methods
to Schrédinger operators, Pauli and Dirac operators and to Witten—-Laplacians. In this
context, spectral analysis plays an important role. Therefore an extensive chapter
on spectral analysis was inserted to provide a better understanding for the operator
theoretic aspects in the 0-Neumann problem, which, in particular, is used to exactly
describe the spectrum of complex Laplacian on the Fock space. Returning to the
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d-Neumann problem, we characterize compactness of the 3-Neumann operator using
a description of precompact subsets in L?-spaces. Compactness of the 0-Neumann
operator is also related to properties of commutators of the Bergman projection and
multiplication operators.

In the last part we use the -methods and some spectral theory to settle the ques-
tion whether certain Schrodinger operators with a magnetic field have compact resol-
vent, It is also shown that a large class of Dirac operators fail to have compact resol-
vent, Finally we exhibit some situations where the 8-Neumann operator is not com-
pact.

Numerous references for the topics of the text and for additional results are given
in the notes at the end of each chapter.

Most of the material of the book stems from various lectures of the author given at
the University of Vienna, the Erwin Schrédinger International Institute for Mathemat-
ical Physics (ESI) in Vienna and at CIRM, Luminy, during programs on the 3-Neumann
operator in recent years. The author is indebted to both institutions, ESI and CIRM, for
their help and hospitality. I would also like to thank my students Franz Berger, Damir
Ferizovi¢ and Tobias Preinerstorfer for their constructive criticisms of the manuscript,
and also for their help in eliminating a number of typos and minor errors.

Vienna, March 2014 Friedrich Haslinger
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1 Bergman spaces

To investigate the solution to the inhomogeneous 8-equation ou = g, we will first con-
sider the case where the right-hand side g is a holomorphic function. Therefore we
need an appropriate Hilbert space of holomorphic functions — the Bergman space, We
will use standard basic facts about Hilbert spaces, such as the Riesz representation
theorem for continuous linear functionals, facts about orthogonal projections, and
complete orthonormal bases.

Let O ¢ C" be a domain and the Bergman space

AXQ) = {f: @ — C holomorphic : |f| = J ()2 dA(z) < oo},
Q

where A is the Lebesgue measure of C". The inner product is given by

(9)= [ @A)
9]

for f,g € AX(Q).

1.1 Elementary properties

For sake of simplicity we first restrict ourselves to domains Q ¢ C. We consider special
continuous linear functionals on A%((2) : the point evaluations. Let fe A%(Q) and fix
z € Q. By Cauchy’s integral theorem we have

_ 1 (@
fla) = 2m'.|’C— e,

Vs

where y,(t) = z + se’, te[0,2n],0<s<rand D(z,7) = {w : lw-1z| <1} c Q. Using
polar coordinates and integrating the above equality with respect to s between 0 and
r we get
f@=— [ fwdrw) (1.1
D(z,r)
Then, by Cauchy-Schwarz,

If(z)IS# j 1. 1f(w)] dA(w)

D(z,r)
1/2 1/2
1
SF( J lzd)l(w)) ( J If(w)IZd/\(w))
D(z,r) D(z,r)
1/2
1 2 1
< nwzr( [ 17 cu(u») <~ A1

0
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If K is a compact subset of (), there is an r(K) > 0 such that for any z € K we have
D(z,7(K)) c Q and we get

sup |f(2)] € ——— Ifll.

z€eK ﬂl/zT(K)

If K ¢ Q ¢ C" we can find a polycylinder
P(z,r(K)) = {w € C" : |w; - z;| <r(K), j=1,...,n}

such that for any z € K we have P(z, r(K)) ¢ Q. Hence by iterating the above Cauchy
integrals we get

Proposition 1.1. Let K c Q be a compact set. Then there exists a constant C(K), only
depending on K such that
sup | f(2)| < C(K) I fI, (1.2)

zeK

forany f € A*(Q).

Proposition 1.2. A*(Q) is a Hilbert space.

Proof. If(f,),isa Cauchysequencein A%(Q), by (1.2), it is also a Cauchy sequence with
respect to uniform convergence on compact subsets of (. Hence the sequence ( f;), has
a holomorphic limit f with respect to uniform convergence on compact subsets of Q.
On the other hand, the original L?-Cauchy sequence has a subsequence, which con-
verges pointwise almost everywhere to the L?-limit of the original L?-Cauchy sequence
(see for instance [63]), and so the L?-limit coincides with the holomorphic function f.
Therefore A%(Q) is a closed subspace of L?(2) and itself a Hilbert space. O

In the sequel we present basic facts about Hilbert spaces and their consequences for
the Bergman spaces.

Proposition 1.3. Let E be a nonempty, convex, closed subset of the Hilbert space H, i.e.
forx,y € Eonehastx + (1 —t)y € E, foreach t € [0,1]. Then E contains a uniquely
determined element of minimal norm.

Proof. The parallelogram rule says that
e+ pI2 + lx = yI* = 20x + 21y1°,  x,y € H.
Letd = inf{|lx| : x € E}. For x, y € E we have % (x + y) € E, hence
1/4lx = yI* = 17201l + 172 1yI* = 11/2(x + p)I,

implies that
lx = yI* < 201xI* + 2 Iyl - 48°.

So, if |x|| = ||y = é, then x = y (uniqueness).
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By the definition of & there exists a sequence (y;); in E such that |y, | — & if
k — oo. The estimate

Ik = Yol® < 2 19? + 2 |p,all® = 467

implies that (y,), is a Cauchy sequence in H. Since H is complete there exists x, € H
with [y, — x| — 0 and, as E is closed, we have x, € E;the mapping x — |x| is
continuous and therefore | x| = lim;_, |yl = 6. O

Theorem 1.4. Let M be a closed subspace of the Hilbert space H. Then there exist
uniquely determined mappings

P:H—M, Q:H— M"

such that

(1) x=Px+Qx,VxeH

(2) for x € M we have Px = x, hence P* = P and Qx = 0; for x € M* we have Px = 0,
Qx =x,and Q* = Q.

(3) The distance of x € H to M is given by

inf{lx -yl : y € M} = |lx - Px|.

(4) Foreach x € H we have
Il = 1Px|? + Qx>

(5) P and Q are continuous, linear, self-adjoint operators.
P and Q are the orthogonal projections of H onto M and M*,

Proof. For each x € H,thesetx + M = {x +y : y € M} is convex. Hence, by
Proposition 1.3, there exists a uniquely determined element of minimal norm in x + M,
which is denoted by Qx. We set Px = x — Qx and see that Px € M, since Qx € x + M.

Now we claim that Qx € M*. We have to show that(Qx, y) = 0, Yy € M : we can
suppose that || y|| = 1, then we have

(Qx, Qx) = [Qx* < [Qx - ayl® = (Qx - ay,Qx ~ay), VYa € C
by the minimality of Qx. Therefore we get
0 < —aly, Qx) - ®Qx, y) + |al,

setting a = (Qx, y), we obtain 0 < —|(Qx, y)|* and (Qx, y) = 0; hence Q : H — M™".

Ifx = xy+x, withx, € Mand x, € M*, then x,— Px = Qx—x,,and since MNM" =
{0} we obtain x;, = Px and x; = Qx, therefore P and Q are uniquely determined. In a
similar way, we get that

P(ax + By) — aPx — BPy = aQx + BQy — Q(ax + By).
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The left side belongs to M, the right side belongs to M, hence both sides are 0, which
proves that P and Q are linear.
Property 3 follows by the definition of Q, property 4 by the fact that

(Px,Qx) =0, Vxe€H.
In addition we have
1Q(x = )l = inf{llx — y +m| : me M} < |x-yl,

hence Q and P = I — Q are continuous.
For x, y € H we have

(Px,y) = (Px,Py +Qy) = (Px,Py) and (x,Py)=(Px+ Qx,Py) = (Px,Py)

hence (Px, y) = (x, Py), and so P is self-adjoint. O

Corollary 1.5. If M # H is a closed, proper subspace of the Hilbert space H, then there
exists an element y # Owith y 1 M.

Proof. Let x € H such that x ¢ M. Set y = Qx : then x # Px implies y # 0. a
The next result is the Riesz representation theorem.

Theorem 1.6. Let L be a continuous linear functional on the Hilbert space H. Then there
exists a uniquely determined element y € H such that Lx = (x, y), Vx € H.

Proof. If L(x) = 0, Vx € H, then we set y = 0. Otherwise we define M = {x : Lx = 0}.
Then, by the continuity of L, the subspace M of H is closed. By Corollary 1.5 we have
M* # 0.Letz € M* with z # 0. Then Lz # 0. Now set y = az, where @ = u’ﬁ.Then
y € M* and

Lz |Lz

2
—— = = 5 = Z,Z).
2 12 g~ ) = el (z2)

Ly = L(az) =

For x € H we define
"n_ Lx
6757

Lx
xX'=x-——y and «x

() 4

Then we obtain Lx' = 0and x" € M, hence (x, y) = 0 and

Lx

v )= Lx.
(%y)yy) *

(xy) = (x",y) = (
If (x, y) = (x, ¥), Vx € H, then we get (x,y — y') = 0, Vx € H, in particular (y - y', y -
y') = 0. Therefore y = y', which shows that y is uniquely determined. O

Corollary 1.7. Let H be a Hilbert space and L € H' a continuous linear functional. Then
the dual norm
ILI = sup{|Lx]| : [x]| < 1}



