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Abstract

Latent variable models are used to analyze the relationship between
the latent variable and manifest variable. Model selection is one of the
most important issues in statistical inference. There are bunches of
different methods that can be used for model selection, like AIC, BIC,
DIC, Bayes factor, and so on. Recently, Bayesian approach becomes a
popular method in model estimation and model selection. This book
focuses on model selection in latent variable models. We introduce a
Bayesian criterion method for model selection in latent variables models,
including nonlinear latent variable model, latent variable model with
ordered categorical variables, two-level latent variable models, finite
mixture latent variable model and latent variable model with non-
ignorable missing data. In addition, and the results are compared with
other Bayesian methods, including Bayes factor and DIC. Different kinds
of latent variable models are considered in this book. In each model, a
simulation study and real example are presented to show the satisfactory

performance of the proposed method.



Preface

Latent variable models are used to analyze the relationship between
the latent variable and manifest variable. Model selection is one of the
most important issues in statistical inference. Two years ago, we have
written a book “A Bayesian Criterion-based Model Selection Method in
Structural Equation Models”. In that book, four different kinds of
structural equation models were discussed. However, we didn’t take the
other model selection methods and missing data in latent variable models
into consideration. In order to make the theory of model selection in latent
variable models more complete, we write this book. Compared with the
former bcok, two chapters are added to deal with these problems.
Specifically, we give a brief review of the approaches to model selection
in Chapter 1. As a matter of fact, Professor Lee, my supervisor in The
Chinese University of Hong Kong, has discussed this problem in his book
“Structural Equation Modeling: A Bayesian Approach”. He reviewed
different model selection methods in Chapter 5. With his permission, in
Chapter 1 of this book, I quoted part of Chapter 5 from Professor Lee’s
book. In Chapter 6, we discussed the missing data in latent variable
models. Different missing mechanisms are considered in this chapter.

In closing, I'd love to thank everyone for their kind wishes and

support.
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Chapter 1  Introduction to Model Selection 1

Chapter 1 Sntroduction lo
Model Seleclion

1.1 Introduction

One important statistical inference beyond estimation is model
selection. In the field of latent variable modeling, a common approach
for hypothesis testing is to use the significance tests on the basis of
p-values that are determined by some asymptotic distributions of the
test statistics. As pointed out in the statistics literature (see e.g. Berger
& Sellke, 1987; Berger & Dalampady, 1987; Kass & Raftery, 1995)
there are problems associated with such an approach. Those related to
latent variable models are discussed as follows:

(i) Tests on the basis of p-values tend to reject the null hypothesis
too frequently with large sample sizes. A dramatic example with a
sample size 113,556 was given by Raftery(1986), where a substantively
meaningful model (associated with the null hypothesis)n that explained
99.9% of the deviance was rejected by a standard chi-squared test with
an extremely small p-value. In the traditional analysis of latent variable
models, various descriptive fit indexes, such as the well-known normed
or non-normed fit indexes (Bentler & Bonett, 1980) and the
comparative fit index (Bentler, 1992) have been proposed as
complementary measures for the goodness-of-fit of the model. Very

often, the values of the fit indexes are over 0.95, but the p-values of the
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z’ -test are less than 0.01. Under these situations, the conclusions
drawn from these two testing methods seem contradictory.

(ii) The p-value of a significance tests in hypothesis testing is a
measure of evidence against the null model, not a means of
supporting/proving the model. Hence, the conclusion of a significance
test can only be used to reject the null hypothesis and cannot offer an
assessment of the strength of the evidence in favor of the null
hypothesis. As a result, even the chi-square goodness-of-fit test does
not reject the null hypothesis, it neither can be used to conclude that
the posited model is better than the alternative model, nor to conclude
that the given data support the posited model. On the other hand,
rejection of the null hypothesis by such a test does not indicate the
alternative model is better.

(iii) The significance tests as well as descriptive fit indexes
mentioned above cannot be applied to test nonnested hypotheses or to
compare nonnested models. Therefore only a hierarchy of nested
hypotheses can by assessed, see for example, Bollen (1989). However,
we are very often interested in assessing non-nested latent variable
models in practical applications.

The well-known statistic in Bayesian model comparison, namely
the Bayes factor (Berger, 1985; Kass & Raftery, 1995), is a Bayesian
approach for hypothesis testing that does not have the above problems.
In the field of latent variable model, we are often interested in
comparing a discrete set of competing models. Other methods that
emphasize for comparing continuous families of models (see Gelman et
al. 2003, and the references therein) are not considered. In general, the
computation of Bayes factor is difficult. Various computational
methods have been proposed, see Kass and Raftery (1995). A simple
but rough approximation, namely the Bayesian Information Criterion

(BIC) has been used for model comparison of some latent variable
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models. For example, Raftery (1993) applied it to the LISREL model,
Lee and Song (2001) applied it to a two-level structural equation model,
and Jedidi, Jagpal, and DeSarbo (1997) applied it to finite mixtures of
structural equation models with a fixed number of components, among
others. Other useful methods for computing the Bayes factor have been
established on the basis of posterior simulation, using recently
developed MCMC methods. DiCiccio et al. (1997) provided a
comparative study on a variety of methods, from Laplace
approximation to impertance. sampling, and bridge sampling, and
concluded that bridge sampling is an attractive method. Gelman and
Meng (1998) showed that path sampling is a direct extension of the
bridge sampling. Naturally, it is expected that path sampling is even
better.

Different from estimation, Bayesian model comparison using
Bayes factor may by sensitive to prior distributions of the parameters.
Hence, these distributions should be selected with care and sensitivity
analysis of the prior inputs should be conducted. Another widely used
Bayesian model selection statistics is the Deviance Information
Criterion (DIC) (Spiegelhalter et al, 2002). It is well known that for
complex statistical models, the computation of Bayes factor is difficult
(DiCiccio et al, 1997). Like the Bayesian Information Criterion (BIC),
DIC takes into account the number of unknown parameters in the
model. As the software WinBUGS (Spiegelhalter et al., 2003) provides
the DIC values for most latent variable models, the application of DIC
is convenient.

While Bayes factor and DIC have some nice features, they have
limitations. As mentioned before, Bayes factor requires proper prior
distributions of the parameters. In fact, it will favor the competitive
model M, if the prior of the parameters in model M, has a very large

spread so as to make it non-informative. This is known as the
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“Bartletts Paradox” . Moreover, for competitive models M, and M,,
such as multilevel latent variable models with very different structures,
it is difficult to find a direct path to link them when applying the path
sampling. Under these cases, some auxiliary models may have to be
used in computing the Bayes factor (see Lee, 2007). This will increase
the computational burden. For DIC, it assumes the posterior mean to be
a good estimator; and for some models (for example, the mixture latent
variable models), WinBUGS does not give the DIC values. Moreover,
if the difference in DIC values is small, only reporting the model with
the smallest DIC value may be misleading. In this book, motivated by
the above limitations of the Bayes factor and DIC, we propose an
attractive Bayesian statistic for model selection for different kinds of
latent variable models.

The proposed Bayesian statistic, called the L, measure, is a
criterion-based method that does not require proper prior distributions
of the parameters. It will be shown that the computational burden
involved is light, and the statistic can be obtained conveniently via
observations simulated for the Bayesian estimation. Basically, the L,
measure involves two components. The first component is related to
the reliability of the prediction, and the second component measures
the discrepancy between the prediction and the observed data. Hence, it
can be used to examine the goodness-of-fit of the model to the
observed data. We will also consider the calibration distribution of the
L, measure, which will allow us to compare two competing models in
more details.

An introduction to the Bayes factor will be presented in Section
1.2, followed by the discussion of Lv measure in Section 1.3. Section
1.4 introduces other methods for model comparison and model

checking, and discussion is given in Section 1.6.
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1.2 Bayes Factor

In this section, we introduce an important Bayesian statistic, the
Bayes factor (Berger, 1985; Kass & Raftery, 1995), for model
comparison/selection. This statistic has a solid logical foundation that
offers great flexibility. It has been extensively applied to a lot of
statistical models, see the references given in Kass and Rartery (1995).
Its applicability is further enhanced by the powerful MCMC methods
that are recently developed in statistical computing.

Suppose the given data Y with a sample size » have arisen under
one of the two competing models M, and M, according to a
probability density p(Y|M,) or p(Y|M,), respectively. Let p(M,)
be the prior probability of M, and P(M)=1-P(M,), and let
P(M, |Y) be the posterior probability, for £=0,1.From the Bayes

theorem, we obtain

p(MkIY)_ P(Yle)P(Mk) k:0,1

 p(Y | M) p(M)+p(Y | My)p(M,)’
p(M 1Y) p(Y|M)p(M,)

Hence, = (1.1)
(M, |Y)  p(Y|M,)p(M,)
The Bayes facter for comparing M, and M, is defined as
Y| M,
0 = pY | M) (1.2)
p(Y | M)

From (1.1), we see that
Posterior odds = Bayes factor x prior odds.
In the special case where the competitive models M, and M,

are equally probable a prior so that p(M,)= p(M,)=0.5, the Bayes

factor is equal to the posterior odds in favor of M,. In general, it is a
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summary of evidence provided by the data in favor of M, as oppose
to M,, or in favor of M, to M,. It may reject a null hypothesis
associated with M, or may equally provide evidence in favor of the
null hypothesis or the alternative hypothesis associated with
M,.Moreover, unlike the significance test approach that is based on the
likelihood ratio criterion and its asymptotic chi-square statistic, the
comparison does not depend on the assumption that either model is
“true” . Moreover, it can be seen from (1.2) that the same data set is
used in the comparison. Hence, it does not favor the alternative
hypothesis (or M,) in extremely large samples. Finally, it can be
applied to compare nonnested models M, and M,.

According to the suggestion given in Kass and Raftery (1995), the
criterion that is given in Table 1.1 is used for interpreting B, and
2log B,,. Kass and Raftery(1995) pointed out that these categaories
furnish appropriate guidelines for practical applications of the Bayes
fator. Depending on the competing models M, and M, for fitting a
given data set. If the Bayes factor (or 2log Bayes factor) reject the
null hypothesis H, that is associated with M, we can conclude that
the data give evidence to support the alternative hypothesis H,, a

more definite conclusion of supporting #, can be attained.

Table 1.1 Interpretation of Bayes factor

B10 2 logB10 Evidence against HO (M0)
<1 <0 Negative (supports HO (M0))
l1to3 0to2 Not worth more than a bare mention
3 to 20 2to 6 Positive (supports HI (M1))
20 to 150 6to 10 Strong
> 150 > 10 Decisive

The interpretation of evidence provided by Table 1.1 depends on
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the specific context. For two nonnested competitive models, say M,
and M,, we should select M, if 2logB,, is negative. If 2logB, is
in (0,2), we may interpret M, is slightly better than M, and hence,

It may be better to select M,. The choice of M, is more definite
if 2logB,, is larger than 6. For two nested competitive models, say
M, is nested in the more complicated model M|, 2logB,, is most
likely larger than zero. If M, is significantly better than A/, it can
be much larger than 6. Then the above criterion will suggest a decisive
conclusion to select M,. However, if 2logB,, is in (0,2), then the
difference between M, and M, is not worth more than a bare
mention . Under this situation, great caution should be taken in drawing
a definite conclusion. According to the “parsimonious” guildline in
practical applications, it may be desirable to select M, if it is much
simpler than M,. The criterion given in Table 1.1 is a suggestion, and
it is not necessary to regard it as a strict rule. Similarly in frequentist
hypothesis testing, one may take the type I error to be 0.05 or 0.10, and
the choice is decided with other factors in the substantive situation,
Similar to other data analyses, for conclusions drawn from the marginal
cases, it is always helpful to conduct other analysis, for example
residual analysis, to cross-validate the results. Generally speaking,
model selection should be approached on a problem-by-problem basis.
It is also desirable to take the opinions from experts into account if no
clear conclusion can be drawn.

From (1.2) ,we see that the density p(Y|M,) is involved in the
Bayes factor. This function is obtained by integrating

p(Y|6,,M,)p(6, | M,) over the parameter space. That is

p(Y | M,)= [p(Y |6,,M,)p(6,, M,)dé, (1.3)

Where 6, is the parameter vector in M,,p(6, |M,)is its prior
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density, and p(Y |6,,M,) is the probability density of Y given 6,.
The dimension of this integral is equal to the dimension of 6, . This
quanity can be interpreted as the marginal likelihood of the data,
obtained by integrating the joint density of (Y,6,) over &, . It can
also be interpreted as the predictive probability of the data; this is , the
probability of seeing the data that actually were observed, calculated
before any data become available. Sometimes, it is also called an
integrated likelihood. Note that, as in the computation of the
likelihood ratio statistic but unlike in some other applications of
likelihood, all constants appearing in the definition of the likelihood
p(Y |6,,M,) must be retained when computing B,,. In fact, B, is
closely related to the likelihood ratio statistic, in which the parameters
6, are eliminated by maximinzation rather than by integration. Very
often, it is very difficult to obtain B, analytically, and various
analytic and numerical approximations have been proposed in the
literature. For example, Chib (1995), and Chib and Jeliazkov (2001)
respectively developed efficient algorithms for computing the marginal
likelihood through MCMC chains produced by the Gibbs sampler and
the MH algorithm. Based on the results of DiCiccip et al.(1997); and
the recommendation of Gelman and Meng (1998), we will apply path
sampling to compute the Bayes factor for model comparison.

A procedure based on path sampling (Gelman & Meng,1998) is
introduced in this section for computing the Bayes factor. The key
feature of path sampling is to compute the ratio of normalizing
constants of probability densities (or equivalently difference of the
logarithm of them). Hence it can be applied to compute the Bayes
factor. Following Gelman and Meng (1998), we motivate this
computing tool from importance sampling (see for example Gelfand &
Dey, 1994) and bridge sampling (Meng & Wong, 1996).

In the context of latent variable models, we consider two



