dview PEARSON - RIRAER PR -

www.broadview.com.cn

Effective Java: -2

I
el
y
i

(5520)

[£] Joshua Bloch =

.........................

- FEIRBmBER

Effective Java

(S52hk)

Effective Java, 2K

()

[2£] Joshua Bloch #

% F 3 ¥ & FR 4
Publishing House of Electronics Industry
JE5{-BENING

SRSy

AABIEE T A Java Gife i) 78 KA BA KM ERSEHN, X200 MU w5 T X5 IF
K GV R B EIER RSAARD 75 % k3 Java SEA R TR E B AR & fifiE, 18575
LAt 2, FARLOZM 4, DLRERA GBS T, (AR,

A5 b i RN EBCARI AL hor @/ ca U B, Il e R (R — B T U . A5
W, ST, UHREA, ATEAEA AN RRZE R,

Original edition, entitled Effective Java, 2E, 9780321356680 by Joshua Bloch, published by Pearson Education,
Inc., publishing as Addison-Wesley, Copyright © 2008 Sun Microsystems,Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education,Inc.

China edition published by Pearson Education Asia Ltd. and Publishing House of Electronics Industry Copy-
right © 2016.The edition is manufactured in the People’s Republic of China, and is authorized for sale and
distribution only in the mainland of China exclusively(except Hong Kong SAR, Macau SAR, and Taiwan).

A F L ENR T AR B Pearson Education 5 A= Z# H AR LS A PR 2 842 T L+ Tolk th hit
o REMMREBSEHE T, AREMER G XE S RABAERE .

ABRA E AN (AEAEhEEE, B 1N TR AP EEEX) #HEETT.
AASH LR EN UM A Pearson Education 574 2 & HUEFSOER: (hhr%, Thn% & AR,

LR 5 & RIS B 01-2015-6096

BREERRE (CP) i

Effective Java: 3§ 2 fiR: #3C/ (32) fiig#h (Bloch).) ¥ —Jba. d-F Tk iHkRs:, 20164
(R B A)

ISBN 978-7-121-27314-8

I QE-IL @ #i-1L @ JAVA iEZ — BFigH - % 1v. @ Tp312

i ERR A B 51 CIP $ili i (2015) 3 233695 5

TiESsE: 5k %
N Rl =Wii#Ee DEEARAF
£ iT: Zihh&EEDENERRAE
HERE 7. BT Tk ARG
AbniiifEie X A48 173 (58 hB%W: 100036
F A 787x9801/16 Elgk. 22.5 FH: 432 FF
MR k. 201644 HE 1k
Bl k. 2016 4F 4 A5 1 kENRI
E fir: 65.00 5¢

JUBRT 3% B - Tl R pE PR A AR)R, i Iml S B RE iR, #FH5IE Sk, 1§ SAH LI R,
B P iE . (010) 88254888,

R 1E KB % Zts@phei.com.cn, #EMIFECERIE & b4 2 dbgq@phei.com.cn,

RR%& 2% . (010) 88258888,

&/ FA: Cindy., Tim #= Matt

RN FEEARFAELIE: www. ertongbook. com

R

WA R FH XKL, “Spouse of me this night today manufactures the unusual meal in 2
home. You will join?” X HHMEVRIGF H Al RELE B = R34 . R FAEEF RS b K E
MRS, SR E AR VRIX LRI BEF 5 25 00 R T 1 F) 58K

WRPRE 22 3 MRS, JFE S iR E 2 MERRXFIE S, IRELIZ B
=M RUAERR: XA S MEmmf (k) | A RgERiersy GEil) ,
A B e MBI A 20 77 SRk B H B9 (IR) o 7ERREE B RZ R BRI M A,
RS 7 S RO E X B P R R, R E 2 AP AR ZA DR AL

FEFFEOTR S W It (R EHRARE S AL BRI RIARY, BRI] pR R,
BCE R AR A VR AR R AR TR RS . BRI RE B
(Facility) 7 YR 75 2 Qo] FHY 20 158 00 R 28 80 75 O AR ot i 2 (R DA iGT8O A L
BEHRE, FUXTERFZHESOBEET R RO, 50 FUR S K i /v
ZA—THE, EBEAENCRE S A S EARE, [HRARN R TR TES Rk
FFAIE

Flan, Java BFEIHE S & SRR AR E R REFRIHES, SN ERN
R, B RS (mFIEAIE, Statement-Oriented) 4RfAAE . Java 2 ZEFRHE T XF
FE . M4, it EME 2rschy. H2, X 1iE S Liedds i tia H
F LR A7

HA 0, BRSO AT IR A S BB RS ERR, & 2BE R
KA (UURE e A B0b TR H A% g0 AR U IR R A, KL
VARERISAL RS TEREIE. $REAMES ATRESH 10 FRRIBI RS Tk, mifEX
10 FgRTETTEF, A 7 MmEIERAME . RO BCE X LR WIER T 3
Gibd Tk, bR RS 55 0T — A B A ATRRAS B A W 2

HarA KEBEE T LR Java BRIFBIHE S EE:, 846 The Java Programming
Language [Arnold05] (¥ # Arnold. Gosling #1 Holmes) , LI K The Java Language
Specification [JLS] ({E# Gosling, Joy #l Bracha) . [FIHEHE, 5 Java BIFIRITHE T HRHAE
FERI APL Y BREMATRE

AP T VRAOEE = FpFEoK, BIARaT LA R R a8 07 sk Fk B W i Y (L) .
LK, YE# Joshua Bloch 7E Sun Microsystems NE—E N Java 1B S YR . SCEURIE
AT fld R b e T A A RARS, AR AR TR TIFSREN
I, fh RS e IR, B SR A0 B A A i ACRS LME EATRE T AR

x EEHEF

PR, o TR A RS TRAR X SR, TR ELHE R o RS HEA T B ke 3% A A 2 T8
LK. BE, RNERFUEHEIAEREMS MG, S,

Guy L. Steele Jr.

Burlington, Massachusetts

2001 44 A

ﬁﬁ—l—

il

T 2001 FE TAEABWE—MZE, Java FEXKETREZEN, FrLLZZHSE K
BIBHE T o Java 5 PERCHE ARG TIZ8, BOEERR, EM. B3R for-cach
PEH . SRIG R T BB EEFE: javaudl.concurrent, I HTE Java 5 Fi#b4T T &k KA
Gilad Bracha —i2, A4 BN T BBTIE S FIE, B3I T 0TI IR KR
HIBA, X AIBAH Doug Lea ¢+,

Java BhE -1 KEEIETIZRAT K IDE (Integrated Development
Environment) , 4l Eclipse. Intellij] IDEA F1 NetBeans, LA K #4704 T E & IDE, 0
FindBugs. BAREKSH5XHHTIE, HELNHZREER, JHHRER NI Java FF &
VREG BT R A2

2004 4F, FEM Sun A FEHE] T Google A Hl, HAEL M 4 4Frh, RIDABLESE Java
FEEBF A, TE Google 23 A Ml JCP (Java Community Process) IR SIHEBY T, #k&eif &l
G APL TR . FIEHEFIH Java F 5 EIF &M Google NFBEEAIRIZERE, B TH# T
1ER—2 H P i .

HIE 2001 FHEE—MBAHER, TEHNRSEESZROEER, UEIERFERERK
FrEd B, HUAKEEGMERRI. B RIRKERAKE Java FEXRERE
S

B — RSB SR 14 SIS T AR K RITIU . FTE R BT AR RO BORE LA A IR
Bopias, RATREMLIRYF T VORIV LS, ZEER], AFRIREESEM, N7 %EL
JBENT 784, WAMUEMT 234148, HEHBR THERAFTARE, HMET -2EL
WA . MR, R LIE BIA B NS 58— A AR R E .

TEH TS, K : Java BFBOHES M ERREEF A 2 TRBEE MK
R EEE, I B Java BTSN —F SRR Java 5 Fl Java 6 RATRRASH IR (L2475,
WA Java A HBE%EE . REXNTEH 2000 FHERBL, WEMMIL, HR—-BH¥
12 7R, BT EIRmRrERERR, SIRMTIERSEE
A AR T IRAESIABLIHIRXT Java S RFEE RN, FR XA PR B AR, WD
VREE I R R Java V& BB RO

San Jose, California
2008 %4 A

H=x

S ottt eeieeenenenesenesesesnsesoansosnsnsnsas xi
1 Introduction..... e eeeeeceeeeeeaneans PP |

2 Creating and Destroying Objects.ccevveeeeeeed

Item 1: Consider static factory methods instead of constructors. . . 5
Item 2: Consider a builder when faced with many constructor

PATAMELETS oottt it it e 11
Item 3: Enforce the singleton property with a private
CONSIrUCtOr OT AN ENUM EYPE . .o vv v vt vevunnvuenvnns 17
Item 4: Enforce noninstantiability with a private constructor 19
Item 5: Avoid creating unnecessary objects 20
Item 6: Eliminate obsolete object references. 24
Item 7: Avoid finalizers. it 27
3 Methods Common to All Objects.................. 33
Item 8: Obey the general contract when overriding equals 33
Item 9: Always override hashCode when you
override equals. ot e 45
Item 10: Always override toString...............ovin... 51
Item 11: Override clone judiciously. 54

Item 12: Consider implementing Comparable 62

vi

X

4 Classes and Interfaces............. SRYRRP— |
Item 13: Minimize the accessibility of classes and members. 67
Item 14: In public classes, use accessor methods,

not public fields . . . i vossisss asvpsvrsssasnas nasmess 71
Item 15: Minimize mutabilityc.coiuuon.. 73
Item 16: Favor composition over inheritance 81
Item 17: Design and document for inheritance or else prohibit it . .87
Item 18: Prefer interfaces to abstractclasses 93
Item 19: Use interfaces only to define types. 98
Item 20: Prefer class hierarchies to tagged classes. 100
Item 21: Use function objects to represent strategies. 103
Item 22: Favor static member classes over nonstatic 106
BB « o v o vt % 30k 2 e i . i B 109
Item 23: Don’t use raw types innewcode 109
Item 24: Eliminate unchecked warnings. 116
Item 25: Prefer liststoarraysccouoinrnn... 119
Item 26: Favor generic types.oovvvr e .. 124
Item 27: Favor genericmethods 129
Item 28: Use bounded wildcards to increase API flexibility 134
Item 29: Consider typesafe heterogeneous containers 142

Enums and Annotationsceeeeeeeeeeees..147

Item 30: Use enums instead of int constants. 147
Item 31: Use instance fields instead of ordinals 158
Item 32: Use EnumSet instead of bit fields................... 159
Item 33: Use EnumMap instead of ordinal indexing. 161
Item 34: Emulate extensible enums with interfaces 165
Item 35: Prefer annotations to naming patterns 169
Item 36: Consistently use the Override annotation. 176
Item 37: Use marker interfaces to define types 179
Methods § S UEEEEE SR NEE AT e 5 ...181
Item 38: Check parameters for validity 181
Item 39: Make defensive copies whenneeded 184
Item 40: Design method signatures carefully 189

Item 41: Use overloading judiciously. 191

B vii

Item 42: Use varargs judiciously 197
Item 43: Return empty arrays or collections, notnulls 201
Item 44: Write doc comments for all exposed API elements 203
8 General Programmingccc0eeveeennns 209
Item 45: Minimize the scope of local variables. 209
Item 46: Prefer for-each loops to traditional for loops......... 212
Item 47: Know and use the libraries 215
Item 48: Avoid float and double if exact answers
arerequired e 218
Item 49: Prefer primitive types to boxed primitives 221
Item 50: Avoid strings where other types are more appropriate . . 224
Item 51: Beware the performance of string concatenation 227
Item 52: Refer to objects by their interfaces 228
Item 53: Prefer interfaces toreflection 230
Item 54: Use native methods judiciously. 233
Item 55 Optimize judiCionslY <o sv0 o s vsmvss s s wansn s s wamss 234
Item 56: Adhere to generally accepted naming conventions. 237

9 Exceptionsccvevivevnecnncrcesnnsnneess 241

Item 57: Use exceptions only for exceptional conditions 241
Item 58: Use checked exceptions for recoverable conditions
and runtime exceptions for programming errors. 244
Item 59: Avoid unnecessary use of checked exceptions 246
Item 60: Favor the use of standard exceptions. 248
Item 61: Throw exceptions appropriate to the abstraction. 250
Item 62: Document all exceptions thrown by each method. 252
Item 63: Include failure-capture information in
detaill messages 254
Item 64: Strive for failure atomicity 256
Ttem 65; Don't ignore eXCeptions « «.e«sssvasms s ssaws s s sos 258
10 CONCULTENECY« oo s 60 5 08 5106 60 5 566 v s 6% wua cwE e v 259
Item 66: Synchronize access to shared mutable data. 259
Item 67: Avoid excessive synchronization 265
Item 68: Prefer executors and tasks tothreads. 271

Item 69: Prefer concurrency utilities towait and notify....... 273

viii

B X

Item 70: Document thread safety 278
Item 71: Use lazy initialization judiciously 282
Item 72: Don’t depend on the thread scheduler 286
Item 73: Avoid thread groups.t 288
11 Serialization.............cco0vuen. .t .
Item 74: Implement Serializable judiciously............... 289
Item 75: Consider using a custom serialized form 295
Item 76: Write readObject methods defensively 302
Item 77: For instance control, prefer enum types
t0 FEadRESOTVE < s isvswmssssasvrsipomsnarsssonds 308
Item 78: Consider serialization proxies instead of serialized
INSEANCES . . v\ v vttt 312

References.......couieiieeienneeeeneascancncanns 321

INdeX v vvveerenenenennencnsssnsssssnsnssscnnseeed?

CHAPTER 1

Introduction

THIS book is designed to help you make the most effective use of the Java™
programming language and its fundamental libraries, java.lang, java.util,
and, to a lesser extent, java.util.concurrent and java.io. The book discusses
other libraries from time to time, but it does not cover graphical user interface
programming, enterprise APIs, or mobile devices.

This book consists of seventy-eight items, each of which conveys one rule.
The rules capture practices generally held to be beneficial by the best and most
experienced programmers. The items are loosely grouped into ten chapters, each
concerning one broad aspect of software design. The book is not intended to be
read from cover to cover: each item stands on its own, more or less. The items are
heavily cross-referenced so you can easily plot your own course through the book.

Many new features were added to the platform in Java 5 (release 1.5). Most of
the items in this book use these features in some way. The following table shows
you where to go for primary coverage of these features:

Feature Chapter or Item

Generics Chapter 5

Enums Items 30-34

Annotations Items 35-37

For-each loop Item 46

Autoboxing Items 40, 49

Varargs Item 42

Static import Item 19
java.util.concurrent Items 68, 69

CHAPTER 1 INTRODUCTION

Most items are illustrated with program examples. A key feature of this book
is that it contains code examples illustrating many design patterns and idioms.
Where appropriate, they are cross-referenced to the standard reference work in
this area [Gamma95].

Many items contain one or more program examples illustrating some practice
to be avoided. Such examples, sometimes known as antipatterns, are clearly
labeled with a comment such as “// Never do this!” In each case, the item
explains why the example is bad and suggests an alternative approach.

This book is not for beginners: it assumes that you are already comfortable
with the Java programming language. If you are not, consider one of the many fine
introductory texts [Arnold05, Sestoft05]. While the book is designed to be acces-
sible to anyone with a working knowledge of the language, it should provide food
for thought even for advanced programmers.

Most of the rules in this book derive from a few fundamental principles. Clar-
ity and simplicity are of paramount importance. The user of a module should
never be surprised by its behavior. Modules should be as small as possible but no
smaller. (As used in this book, the term module refers to any reusable software
component, from an individual method to a complex system consisting of multiple
packages.) Code should be reused rather than copied. The dependencies between
modules should be kept to a minimum. Errors should be detected as soon as possi-
ble after they are made, ideally at compile time.

While the rules in this book do not apply 100 percent of the time, they do
characterize best programming practices in the great majority of cases. You
should not slavishly follow these rules, but violate them only occasionally and
with good reason. Learning the art of programming, like most other disciplines,
consists of first learning the rules and then learning when to break them.

For the most part, this book is not about performance. It is about writing pro-
grams that are clear, correct, usable, robust, flexible, and maintainable. If you can
do that, it’s usually a relatively simple matter to get the performance you need
(Item 55). Some items do discuss performance concerns, and a few of these items
provide performance numbers. These numbers, which are introduced with the
phrase “On my machine,” should be regarded as approximate at best.

For what it’s worth, my machine is an aging homebuilt 2.2 GHz dual-core
AMD Opteron™ 170 with 2 gigabytes of RAM, running Sun’s 1.6_05 release of
the Java SE Development Kit (JDK) atop Microsoft Windows® XP Professional
SP2. This JDK has two virtual machines, the Java HotSpot™ Client and Server
VMs. Performance numbers were measured on the Server VM.

CHAPTER 1 INTRODUCTION

When discussing features of the Java programming language and its libraries,
it is sometimes necessary to refer to specific releases. For brevity, this book uses
“engineering version numbers” in preference to official release names. This table
shows the mapping between release names and engineering version numbers.

Official Release Name Engineering Version Number
JDK 1.1.x/JRE 1.1.x 1.1
Java 2 Platform, Standard Edition, v 1.2 1.2
Java 2 Platform, Standard Edition, v 1.3 1.3
Java 2 Platform, Standard Edition, v 1.4 1.4
Java 2 Platform, Standard Edition, v 5.0 1.5
Java Platform, Standard Edition 6 1.6

The examples are reasonably complete, but they favor readability over com-
pleteness. They freely use classes from the packages java.util and java.io. In
order to compile the examples, you may have to add one or more of these import
statements:

import java.util.sx;
import java.util.concurrent.x;
import java.io.x;

Other boilerplate is similarly omitted. The book’s Web site, http://
java.sun.com/docs/books/effective, contains an expanded version of each
example, which you can compile and run.

For the most part, this book uses technical terms as they are defined in The
Java Language Specification, Third Edition [JLS]. A few terms deserve special
mention. The language supports four kinds of types: interfaces (including annota-
tions), classes (including enums), arrays, and primitives. The first three are known
as reference types. Class instances and arrays are objects; primitive values are not.
A class’s members consist of its fields, methods, member classes, and member
interfaces. A method’s signature consists of its name and the types of its formal
parameters; the signature does not include the method’s return type.

This book uses a few terms differently from the The Java Language Specifica-
tion. Unlike The Java Language Specification, this book uses inheritance as a syn-
onym for subclassing. Instead of using the term inheritance for interfaces, this

CHAPTER 1 INTRODUCTION

book simply states that a class implements an interface or that one interface
extends another. To describe the access level that applies when none is specified,
this book uses the descriptive term package-private instead of the technically cor-
rect term default access [JLS, 6.6.1].

This book uses a few technical terms that are not defined in The Java Lan-
guage Specification. The term exported API, or simply API, refers to the classes,
interfaces, constructors, members, and serialized forms by which a programmer
accesses a class, interface, or package. (The term API, which is short for applica-
tion programming interface, is used in preference to the otherwise preferable term
interface to avoid confusion with the language construct of that name.) A pro-
grammer who writes a program that uses an API is referred to as a user of the APL.
A class whose implementation uses an APl is a client of the API.

Classes, interfaces, constructors, members, and serialized forms are collec-
tively known as API elements. An exported API consists of the API elements that
are accessible outside of the package that defines the API. These are the API ele-
ments that any client can use and the author of the API commits to support. Not
coincidentally, they are also the elements for which the Javadoc utility generates
documentation in its default mode of operation. Loosely speaking, the exported
API of a package consists of the public and protected members and constructors
of every public class or interface in the package.

