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PREFACE

The contents of this book are based on the series, ‘Some Fundamentals
of Medical Electronics’, which appeared in the British Journal of
Anaesthesia, and experience gained over several years of teaching
scientists and doctors on the ‘Laboratory Course in Medical Elec-
tronics’, held at the Royal College of Surgeons of England.

Increasing instrumentation is being used in medical and biological
laboratories, but many of the staff lack a basic grounding in the
fundamentals of electronic engineering. When doctors are responsible
for electronics staff, and for ordering equipment and spares, it is
desirable that they have some knowledge of what is involved, and
what the various technical terms mean, if only in outline. This
applies also to technicians responsible for operating equipment in
medical departments, in order to obtain the most effective func-
tioning of the apparatus.

The basic devices and circuits are dealt with in a descriptive
fashion, since a knowledge of detailed design is best left to the elec-
tronic engineer. In a single volume, it is not possible to give details of
all the applications of electronic techniques in medicine. Wherever
possible, references have been given for further reading, so that
workers in a particular specialty can find information on techniques
which will be of use to them. Counting techniques for use with radio-
isotopes have been deliberately excluded, since these are well covered
elsewhere.

It is a pleasure to acknowledge the encouragement of the editorial
stafl of the British Journal of Anaesthesta, and of my colleagues on the
staff, and many students, at the Royal College of Surgeons. Without
their patient co-operation, I would not have been able to gain an
appreciation of the power of modern instrumental techniques in
medical research.

D.W.H,
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MAGNETISM AND ELECTROMAGNETISM

PERMANENT MAGNETS

The fact that an iron needle, when rubbed with lodestone and freely
suspended, acts as a compass and aligns itself in a North-South direc-
tion has been known from early times. A piece of lodestone (leading
stone) can also be used as a compass, hence the name. Needham
(1962) mentions a Chinese text describing the use of a magnetic
needle compass as early as A.D. 1080, about a century before its first
European use. The magnetic attraction of lodestone to iron was
mentioned in the late 3rd century B.C. An interesting connection
with medicine is provided by William Gilbert (1546-1603), Per-
sonal Physician to Queen Elizabeth I, who published his work ‘On
the Magnet and on Magnetic Bodies, and concerning that great
magnet the Earth, a new physiology’.

The availability of compact, powerful permanent magnets has
made possible the construction of biological recording equipment of
various types. These are described in Chapter 14. Whether the
method of writing is ink on paper, heated stylus, ink jet or photo-
graphic, a powerful magnet is needed. It is interesting to note that in
order to obtain a high degree of sensitivity for his experiments on
animal electricity, Emil Du Bois Reymond had to wind 3-17 miles of
wire on his galvanometer coils (Bence Jones, 1852). This was before
the availability of powerful magnets.

Permanent magnets are found in moving-coil galvanometers,
moving-coil meters, loudspeakers, magnetic stirrers and in para-
magnetic oxygen analysers.

The Magnetic Field

In the space surrounding every magnet there exists what is called a
magnetic field. If a strip of magnetic material, a bar magnet, is
dipped in iron filings, then the filings will be attracted to each end of
the magnet. These preferred regions of attraction are called Magnetic
Poles. If the magnet is freely suspended, it will take up a North-
South position. The end pointing towards North is called the ‘N” or
north-seeking pole. The other end is the ‘S” or south-seeking pole.
Like magnetic poles will repel, and unlike poles attract each other.
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MAGNETISM AND ELECTROMAGNETISM

Two similar poles of unit strength placed one centimetre apart in a
vacuum will repel each other with a force of one dyne.

If a small compass is placed at some point near the N pole of a
straight bar magnet and then moved always in the direction that the
compass is pointing, the centre of the compass needle will trace out a
smooth magnetic line of force. By starting at different points, many
such lines may be plotted as shown in Figure 1.1.

T

S N

=

Figure 1.1. Magnetic field due to a bar magnet

These magnetic lines of force do not really exist. They are simply
useful devices for describing magnetic phenomena. Where the mag-
net exerts its strongest attraction close to the poles, the field is
greater, and the lines are closest together.

Pole pieces

O #

Figure 1.2. Figure 1.3. Field in the gap of a
Galvanometer magnet galvanometer magnet

The magnets used in rapid response pen recorders are shaped as in
Figure 1.2. The magnetic field is concentrated in the gap between the
pole pieces (Figure 1.3). The cylindrical iron core is omitted in this

2



TYPES OF MAGNETISM

diagram. The strength of a magnetic field is numerically equal to the
force in dynes acting on a unit pole placed at the point considered.
The unit is the oersted. In a field of 5,000 oersteds, a force of 5,000
dynes would act on a unit pole. The strength of pen recorder magnets
would be of the order of several thousand oersteds.

It is not often that the magnets have to be removed from the
magnet block, but when this happens they should be treated with
respect. Dropping them can reduce their strength. The use of a steel
‘keeper’ bar placed across the pole pieces will prevent self-demag-
netization, which occurs when the magnets are stored.

TYPES OF MAGNETISM

Ferromagnetism

The commonly encountered permanent magnets are of the ferro-
magnetic type. They are composed of myriads of tiny elementary
magnets. Before a piece of iron or steel has been magnetized, these
elementary magnets may be thought of as being orientated virtually
at random. During the process of magnetizing the iron, the elemen-
tary magnets are made to align with the magnetizing field.

Paramagnetism

Some substances, notably oxygen in medical applications, exhibit
a form of magnetism which is weak compared with ferromagnetism
Bates (1961). This property is utilized in paramagnetic oxygen
analysers.

THE BEHAVIOUR OF MAGNETIC SHIELDING

The effect of placing a piece of soft iron in a uniform magnetic field
is shown in Figure 1.4. The soft iron is seen to have the effect of
concentrating the magnetic lines of force so that they pass through
the soft iron in preference to passing through the air. An alloy such as
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Figure 1.4. The action of a piece of soft iron on a magnetic field
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MAGNETISM AND ELECTROMAGNETISM

mu-metal is considerably more effective than iron. Hence, it is usual
practice to place circuits which must be shielded from stray magnetic
fields inside a mu-metal box, the action of which is to ‘screen’ the
circuit from the field. The electron beam in a cathode ray tube is
susceptible to influence from stray magnetic fields; for this reason the
cathode ray tube in an oscilloscope is usually mounted inside a
mu-metal shield.

ELECTROMAGNETISM

The first discovery of any connection between electricity and mag-
netism was made by Hans Oersted in 1820. Oersted was born the
son of an apothecary, graduated in medicine in Copenhagen, and
subsequently became Professor of Physics at Copenhagen. He placed
a current-carrying wire parallel to a magnetic compass needle, and
found that the needle was deflected. Soon after, Ampere found that a
loop or coil of wire acted as a magnet when an electric current was
passed through it. The available magnetic field is greatly increased if
the coil is wound on a soft iron core (Figure 1.5).

Figure 1.5. Field due to a simple electromagnet

Electromagnets are commonly encountered in the form of
‘solenoids’, used to produce mechanical movement. The magnetic
field arising when current is switched through the coil attracts an iron
armature which is free to move, and is attached to the object to be
moved. Solenoid-operated valves are of great use in gas sampling
systems. Hill and Stone: (1963) describe a solenoid-operated gas
sampling pump which can be used to sample potentially explosive
anaesthetic mixtures.
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TRANSFORMERS

Another very common application of electromagnetism occurs in
electromagnetic relays. The relay coil is wound on an iron core. The
pull of the electromagnet attracts a pivoted soft iron armature. The
movement of the armature is caused to open or close pairs of electrical
contacts, as required. For general purpose applications, Post Office
type relays (Atkinson, 1947) are used. Special high speed relays,
capable of being driven at mains frequency, are used in ‘chopper’
type d.c. amplifiers. A concise account of relays for use in biological
applications is given by Machin (1958).

The closure or release of the relay contacts can be delayed by the
mounting of the appropriate copper bands or ‘slugs’ on the iron core
of the relay coil. Consider the case of a slow release relay. When the
coil current is switched off, the collapsing magnetic field induces an
eddy current in the low resistance slug. This gives rise to a temporary
field which holds on the relay armature for a period of perhaps 100
msec before it releases. For normal relays releasing times would be of
the order of 30 to 40 msec. Slow release relays were used by Hill and
Hook (1958) to switch the solenoids of a solenoid-operated inspira-
tory—expiratory valve. The slow release action ensures that when
switching occurs, the valve that is shut stays shut until the other
valve closes, whereupon the first valve opens. At no instant are both
valves moving, as would occur with a simple change-over action.
Thus gas leakage past the valves is prevented.

Solenoids are available for operating from mains frequency a.c.
supplies. Copper ‘shading’ rings fitted to the core produce a reason-
ably steady pull with a.c. energization. A.C. solenoids are useful when
considerable power is required, but the unsteadiness (chatter) of the
pull can be troublesome in some applications.

TRANSFORMERS

When a coil carries a changing or alternating current, in contrast to a
steady or direct current, a changing magnetic field results. Consider
two separate coils, wound one on top of the other. When a varying
current flows in one coil (called the primary coil), a varying mag-
netic field is produced. The lines of force will intersect the second
(secondary) coil. When a coil is cut by a changing number of
magnetic lines of force, a voltage is induced in it. The magnitude of
the voltage depends on both the number of lines cutting the coil, and
the number of turns in the coil. Thus if both coils have the same
number of turns, the voltage induced in the secondary coil will equal
that in the primary, assuming the number of lines cutting the two
coils is the same. When the secondary has twice as many turns as the

5



MAGNETISM AND ELECTROMAGNETISM

primary, the secondary voltage will be twice the primary voltage.
Such a device is known as a transformer. A transformer can be thus
used to raise or lower an alternating (a.c.) voltage, but not a direct
(d.c.) voltage. Mains transformers are encountered in the large
majority of electronic apparatus. The mains supply voltage is applied
to the primary winding. Secondary windings provide the various
voltages needed for the operation of the electronic circuits.

The transformer does not contain any active elements capable of
producing electrical power. Neglecting any losses, the power in the
primary should equal the power in the secondary(s). Using the
appropriate r.m.s. values (Chapter 5), the electrical power is given
by the product (voltage X current), in the circuit concerned. Neg-
lecting power losses

Primary voltage (V) X primary current (/)
= Secondary voltage (V) x secondary current (/)
Vplp = VI

If the secondary voltage is one-fifth of the primary current, the
secondary current will be five times as large as the primary current.
Ohm’s law (Chapter 4) defines the resistance of a circuit (the oppo-
sition offered by the circuit to current flow) as having a value R in
ohms given by R=V/L.

Consider a transformer having a 5: 1 step-down ratio. Suppose
that when 50 V r.m.s. is applied to the primary, a current of 1 A
r.m.s. flows in the primary. The secondary voltage will be 10 V, and
the secondary current 5 A. The effective resistance of the primary is
50/1=50 ohms. That of the secondary is 10/5=2 ohms. The ratio of
primary to secondary resistance is 50/2=25:1=52: 1. The effec-
tive resistance in the secondary is related to that in the primary, by
the square of the turns ratio. Transformers are often used to change
the effective resistance of a circuit. Thus a ‘matching transformer’ is
used to match the high resistance circuit of the output valve of an
audio amplifier into the low resistance of a loudspeaker coil. Matching
transformers were much used to obtain the best power transfer
between stages in transistor a.c. amplifiers. However, transformers
are not looked upon with favour in modern circuitry. They tend to
be microphonic, and are prone to the effect of unwanted stray
magnetic fields. Sincc the price of transistors has fallen markedly, it is
preferable to use more transistors to attain the desired degree of
amplification, and to eliminate the transformers (Cherry, 1963).

At power-line frequencies, transformer coils are wound on a
laminated steel core. The thin sheet laminations reduce eddy cur-
rents induced in the core, which would waste power. At audio fre-
quencies, small laminated cores of special alloys are used. At radio
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EDDY CURRENTS

frequencies, the coils do not have a solid core, being ‘air-cored’, just
wound on a hollow former. They may, however, have a ferrite core.
The core is fabricated from a large number of small particles of
ferrite material, compressed and held together with a binder material.
Ferrite cored transformers are used in the tuned circuits of very high
frequency (v.h.f.) telemetry systems.

EDDY CURRENTS

When a changing current is flowing in a conductor adjacent to a
piece of metal, the changing magnetic field induces ‘eddy’ currents
in the metal. The term eddy current arises from the fact that the
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Figure 1.6. Eddy currents circulating in a
solid core

induced current whirls around the metal like eddies in water. If an
alternating current flows in a coil wound on a solid iron core, eddy
currents flow in the core (Figure 1.6), which becomes warm if the
power involved is suflicient. This heating represents a waste of the
electrical power supplied to the transformer. To reduce eddy cur-
rents, audio and mains frequency transformer coils are wound on

Laminations

Insulation

Figure 1.7. A laminated core

cores constructed from a series of thin sheets (laminations) of special
iron or alloy material (Figure 1.7). The laminations are insulated

7



MAGNETISM AND ELECTROMAGNETISM

from each other, so that the currents can now no longer circulate in
the bulk of the metal.

Applications of Eddy Currents to Therapeutic Diathermy

In transformer design, attention is paid to the reduction of eddy
currents. However, the heating of tissue by induced eddy currents is
the basis of treatment by therapeutic diathermy units operating at

27 Mc/s.

PROPERTIES OF MAGNETIC MATERIALS

For many years, it was known that soft iron could he magnetized and
demagnetized easily, and was therefore suitable for use as the core
material of an electromagnet. On the other hand, steel could only be
magnetized and demagnetized with difficulty, and could thus be
made into a permanent magnet.

Intensity of Magnetization (J)
The Magnetic Moment (M) of a magnet is given by
M = Pole strength x Magnetic length
where the magnetic length is the distance separating the poles. The
length would be measured in centimetres, and the pole strength in
c.g.s. (centimetre-gram-second) units. The Intensity of Magnetiza-
tion (J) of the material is defined as the magnetic moment per unit
volume. If the cross-sectional area of the magnet is constant, the
intensity of magnetization is equal to the ‘pole’ strength per unit area.

A ISaturation
|

Intensity
of magnetization

Magnetizing field

Figure 1.8. The onset of saturation when the magnetic
field is too high

When a magnetic material is magnetized by placing it in an
increasing magnetic field, it is found that the intensity of magnetiza-
tion increases to a maximum when the material becomes saturated

(Figure 1.8).



