Methods in ENZYMOLOGY

Volume 434
Lipidomics and Bioactive Lipids:
Lipids and Cell Signaling

Edited by H. Alex Brown

Lipidomics and Bioactive Lipids: Lipids and Cell Signaling

EDITED BY

H. ALEX BROWN

Departments of Pharmacology and Chemistry Vanderbilt University Medical Center Nashville, Tennessee

Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road. London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright © 2007, Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher's consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2007 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. 0076-6879/2007 \$35.00

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

For information on all Elsevier Academic Press publications visit our Web site at www.books.elsevier.com

ISBN: 978-0-12-373965-0

PRINTED IN THE UNITED STATES OF AMERICA 07 08 09 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID International

Sabre Foundation

Lipidomics and Bioactive Lipids: Lipids and Cell Signaling

Editors-in-Chief

JOHN N. ABELSON AND MELVIN I. SIMON

Division of Biology California Institute of Technology Pasadena, California

Founding Editors

SIDNEY P. COLOWICK AND NATHAN O. KAPLAN

此为试读,需要完整PDF请访问: www.ertongbook.com

Contributors

Viviana Anelli

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina

Junken Aoki

Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan and PRESTO of the Japan Science and Technology Agency, Kawaguchi-Shi, Saitama, Japan

Hiroyuki Arai

Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan and CREST of the Japan Science and Technology Agency, Kawaguchi-Shi, Saitama, Japan

Blaine N. Armbruster

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

Renzo Bagnati

Department of Environmental Health, Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy

Christopher P. Berrie

Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy

Jacek Bielawski

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina

H. Alex Brown

Departments of Pharmacology and Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee

George M. Carman

Department of Food Science, Rutgers University, New Brunswick, New Jersey

Charles E. Chalfant

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia and Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia

Shean-Tai Chiou

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

Wonhwa Cho

Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois

Daniela Corda

Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy

Amber C. Donahue

Department of Molecular Biology and Biochemistry and Center for Immunology, University of California–Irvine, Irvine, California

Richard M. Epand

Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada

John H. Exton

Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee

Peter C. Fridy

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

Michael A. Frohman

Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

David A. Fruman

Department of Molecular Biology and Biochemistry and Center for Immunology, University of California–Irvine, Irvine, California

Antonio Gomez-Munoz

Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain

Hervé Guillou

The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom

Phillip T. Hawkins

The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom

Lee G. Henage

Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee

Cristiano Iurisci

Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy

Yasunori Kanaho

Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

Michael G. Kharas

Department of Molecular Biology and Biochemistry and Center for Immunology, University of California–Irvine, Irvine, California

Nadia F. Lamour

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

David M. Lehmann

Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York

Michael Maceyka

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

Debasis Manna

Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois

Sheldon Milstien

Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland

Poulami Mitra

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

Rei Morikawa

Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo and Laboratory of Cellular Biochemistry, RIKEN, Wako-shi, Saitama, Japan

Andrew I. Morris

Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky College of Medicine, Lexington, Kentucky

Sashidhar Mulugu

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

Kazuhisa Nakayama

Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

xiv Contributors

Lina M. Obeid

Department of Medicine, Medical University of South Carolina, and Ralph H. Johnson VA Medical Center, Charleston, South Carolina

James C. Otto

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

John S. Owen

Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina

Shawn G. Payne

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

Enza Piccolo

Clinical Research Centre, "G. d'Annunzio" University Foundation, Centre for Excellence on Aging (CeSI), Chieti Scalo, Italy

Anita M. Preininger

Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee

Anthony A. Ribeiro

Department of Biochemistry, NMR Center, Duke University Medical Center, Durham, North Carolina

Alan V. Smrcka

Department of Pharmacology and Physiology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York

Susan S. Smyth

Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky College of Medicine, Lexington, Kentucky

Stefka Spassieva

Department of Medicine, Medical University of South Carolina, Charleston, South Carolina

Sarah Spiegel

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

Len R. Stephens

The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom

Michael J. Thomas

Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina

Matthew K. Topham

Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah

Masafumi Tsujimoto

Laboratory of Cellular Biochemistry, RIKEN, Wako-shi, Saitama, Japan

Dayanjan S. Wijesinghe

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

Wen-I Wu

Array Biopharma, Boulder, Colorado

Robert L. Wykle

Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina

Yun Xiang

Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee

Takeaki Yokozeki

Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

John D. York

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

Chujun Yuan

Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York

PRFFACE

Lipid metabolism and cellular signaling are highly integrated processes that regulate cell growth, proliferation, and survival. Lipids have essential roles in cellular functions, including determinants of membrane structure, serving as docking sites for cytosolic proteins, and allosteric modulators. Abnormalities in lipid composition have established roles in human diseases, including diabetes, coronary disease, obesity, neurodegenerative diseases, and cancer. In the post-genomic era, we look at epigenetic factors and metabolomic biomarkers to better understand the molecular mechanisms of complex cellular processes and realize the benefits of personalized medicine.

Recent advances in lipid profiling and quantitative analysis provide an opportunity to define new roles of lipids in complex biological functions. Lipidomics was developed to be a systems biology approach to better understand contextual changes in lipid composition within an organelle, cell, or tissue as a result of challenge, stress, or metabolism. It provides an approach for determining precursor-product relationships as well as ordering the temporal and spatial events that constitute vital processes. This volume of Methods in Enzymology is one of a three-volume set on Lipidomics and Bioactive Lipids designed to provide state-of-the-art techniques in profiling and quantification of lipids using mass spectrometry and other analytical techniques used to determine the roles of lipids in cell function and disease. The first volume (432), Mass-Spectrometry-Based Lipid Analysis, provides current techniques to profile lipids using qualitative and quantitative approaches. The cell liposome is composed of thousands of molecular species of lipids; thus, generating a detailed description of the membrane composition presents both analytical and bioinformatic challenges. This volume includes the methodologies developed by the National Institute of General Medicine large-scale collaborative initiative, LIPID MAPS (www.lipidmaps.org), as well as an overview of international lipidomics projects. The second volume (433), Specialized Analytical Methods and Lipids in Disease, presents applications of lipid analysis to understanding disease processes, in addition to describing more specialized analytical approaches. The third volume (434), Lipids and Cell Signaling, is a series of chapters focused on lipid-signaling molecules and enzymes.

The goal of these volumes is to provide a guide to techniques used in profiling and quantification of cellular lipids with an emphasis on lipid signaling pathways. Many of the leaders in the emerging field of lipidomics have contributed to these volumes, and I am grateful for their comments in shaping the content. I hope that this guide will satisfy the needs of students

xviii

who are interested in lipid structure and function as well as experienced researchers. It must be noted that many of the solvents, reagents, and instrumentation described in these chapters have the potential to be harmful to health. Readers should consult material safety data sheets, follow instrument instructions, and be properly trained in laboratory procedures before attempting any of the methods described.

H. ALEX BROWN

VOLUME I. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME II. Preparation and Assay of Enzymes

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME III. Preparation and Assay of Substrates

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME IV. Special Techniques for the Enzymologist Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME V. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VI. Preparation and Assay of Enzymes (Continued)
Preparation and Assay of Substrates
Special Techniques
Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VII. Cumulative Subject Index Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VIII. Complex Carbohydrates

Edited by Elizabeth F. Neufeld and Victor Ginsburg

VOLUME IX. Carbohydrate Metabolism Edited by WILLIS A. WOOD

VOLUME X. Oxidation and Phosphorylation Edited by Ronald W. Estabrook and Maynard E. Pullman

VOLUME XI. Enzyme Structure *Edited by* C. H. W. HIRS

VOLUME XII. Nucleic Acids (Parts A and B)

Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE

VOLUME XIII. Citric Acid Cycle Edited by J. M. LOWENSTEIN

VOLUME XIV. Lipids Edited by J. M. LOWENSTEIN

VOLUME XV. Steroids and Terpenoids *Edited by* RAYMOND B. CLAYTON

VOLUME XVI. Fast Reactions Edited by Kenneth Kustin

VOLUME XVII. Metabolism of Amino Acids and Amines (Parts A and B)

Edited by Herbert Tabor and Celia White Tabor

VOLUME XVIII. Vitamins and Coenzymes (Parts A, B, and C) Edited by DONALD B. McCORMICK AND LEMUEL D. WRIGHT

VOLUME XIX. Proteolytic Enzymes

Edited by Gertrude E. Perlmann and Laszlo Lorand

VOLUME XX. Nucleic Acids and Protein Synthesis (Part C) Edited by Kivie Moldave and Lawrence Grossman

VOLUME XXI. Nucleic Acids (Part D)

Edited by Lawrence Grossman and Kivie Moldave

VOLUME XXII. Enzyme Purification and Related Techniques Edited by WILLIAM B. JAKOBY

VOLUME XXIII. Photosynthesis (Part A)

Edited by Anthony San Pietro

VOLUME XXIV. Photosynthesis and Nitrogen Fixation (Part B) *Edited by* ANTHONY SAN PIETRO

VOLUME XXV. Enzyme Structure (Part B)

Edited by C. H. W. Hirs and Serge N. Timasheff

VOLUME XXVI. Enzyme Structure (Part C)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVII. Enzyme Structure (Part D)

Edited by C. H. W. Hirs and Serge N. Timasheff

VOLUME XXVIII. Complex Carbohydrates (Part B) Edited by Victor Ginsburg

VOLUME XXIX. Nucleic Acids and Protein Synthesis (Part E) Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE

Volume XXX. Nucleic Acids and Protein Synthesis (Part F) Edited by Kivie Moldave and Lawrence Grossman

VOLUME XXXI. Biomembranes (Part A)

Edited by Sidney Fleischer and Lester Packer

VOLUME XXXII. Biomembranes (Part B)

Edited by Sidney Fleischer and Lester Packer

VOLUME XXXIII. Cumulative Subject Index Volumes I-XXX Edited by Martha G. Dennis and Edward A. Dennis

VOLUME XXXIV. Affinity Techniques (Enzyme Purification: Part B)

Edited by WILLIAM B. JAKOBY AND MEIR WILCHEK

VOLUME XXXV. Lipids (Part B)

Edited by JOHN M. LOWENSTEIN

VOLUME XXXVI. Hormone Action (Part A: Steroid Hormones)

Edited by BERT W. O'MALLEY AND JOEL G. HARDMAN

VOLUME XXXVII. Hormone Action (Part B: Peptide Hormones)

Edited by BERT W. O'MALLEY AND JOEL G. HARDMAN

VOLUME XXXVIII. Hormone Action (Part C: Cyclic Nucleotides)

Edited by Joel G. Hardman and Bert W. O'Malley

VOLUME XXXIX. Hormone Action (Part D: Isolated Cells, Tissues, and Organ Systems)

Edited by Joel G. Hardman and Bert W. O'Malley

VOLUME XL. Hormone Action (Part E: Nuclear Structure and Function)

Edited by BERT W. O'MALLEY AND JOEL G. HARDMAN

VOLUME XLI. Carbohydrate Metabolism (Part B)

Edited by W. A. WOOD

VOLUME XLII. Carbohydrate Metabolism (Part C)

Edited by W. A. WOOD

VOLUME XLIII. Antibiotics

Edited by JOHN H. HASH

VOLUME XLIV. Immobilized Enzymes

Edited by Klaus Mosbach

VOLUME XLV. Proteolytic Enzymes (Part B)

Edited by LASZLO LORAND

VOLUME XLVI. Affinity Labeling

Edited by WILLIAM B. JAKOBY AND MEIR WILCHEK

VOLUME XLVII. Enzyme Structure (Part E)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XLVIII. Enzyme Structure (Part F)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XLIX. Enzyme Structure (Part G)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME L. Complex Carbohydrates (Part C)

Edited by Victor Ginsburg

VOLUME LI. Purine and Pyrimidine Nucleotide Metabolism

Edited by Patricia A. Hoffee and Mary Ellen Jones

VOLUME LII. Biomembranes (Part C: Biological Oxidations)

Edited by Sidney Fleischer and Lester Packer

VOLUME LIII. Biomembranes (Part D: Biological Oxidations)

Edited by Sidney Fleischer and Lester Packer

VOLUME LIV. Biomembranes (Part E: Biological Oxidations)

Edited by Sidney Fleischer and Lester Packer

VOLUME LV. Biomembranes (Part F: Bioenergetics)

Edited by Sidney Fleischer and Lester Packer

VOLUME LVI. Biomembranes (Part G: Bioenergetics)

Edited by Sidney Fleischer and Lester Packer

VOLUME LVII. Bioluminescence and Chemiluminescence

Edited by MARLENE A. DELUCA

VOLUME LVIII. Cell Culture

Edited by William B. Jakoby and Ira Pastan

VOLUME LIX. Nucleic Acids and Protein Synthesis (Part G)

Edited by Kivie Moldave and Lawrence Grossman

VOLUME LX. Nucleic Acids and Protein Synthesis (Part H)

Edited by Kivie Moldave and Lawrence Grossman

VOLUME 61. Enzyme Structure (Part H)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME 62. Vitamins and Coenzymes (Part D)

Edited by Donald B. McCormick and Lemuel D. Wright

VOLUME 63. Enzyme Kinetics and Mechanism (Part A: Initial Rate and Inhibitor Methods)

Edited by DANIEL L. PURICH

VOLUME 64. Enzyme Kinetics and Mechanism

(Part B: Isotopic Probes and Complex Enzyme Systems)

Edited by DANIEL L. PURICH

VOLUME 65. Nucleic Acids (Part I)

Edited by Lawrence Grossman and Kivie Moldave

VOLUME 66. Vitamins and Coenzymes (Part E)

Edited by Donald B. McCormick and Lemuel D. Wright

VOLUME 67. Vitamins and Coenzymes (Part F)

Edited by Donald B. McCormick and Lemuel D. Wright

VOLUME 68. Recombinant DNA

Edited by RAY WU

VOLUME 69. Photosynthesis and Nitrogen Fixation (Part C)

Edited by Anthony San Pietro

VOLUME 70. Immunochemical Techniques (Part A)

Edited by Helen Van Vunakis and John J. Langone

VOLUME 71. Lipids (Part C)

Edited by JOHN M. LOWENSTEIN

VOLUME 72. Lipids (Part D)

Edited by John M. Lowenstein

VOLUME 73. Immunochemical Techniques (Part B)

Edited by John J. Langone and Helen Van Vunakis

VOLUME 74. Immunochemical Techniques (Part C)

Edited by John J. Langone and Helen Van Vunakis

VOLUME 75. Cumulative Subject Index Volumes XXXI, XXXII,

XXXIV-LX

Edited by Edward A. Dennis and Martha G. Dennis

VOLUME 76. Hemoglobins

Edited by Eraldo Antonini, Luigi Rossi-Bernardi, and

EMILIA CHIANCONE

VOLUME 77. Detoxication and Drug Metabolism

Edited by WILLIAM B. JAKOBY

VOLUME 78. Interferons (Part A)

Edited by SIDNEY PESTKA

VOLUME 79. Interferons (Part B)

Edited by SIDNEY PESTKA

VOLUME 80. Proteolytic Enzymes (Part C)

Edited by LASZLO LORAND

VOLUME 81. Biomembranes (Part H: Visual Pigments and Purple Membranes, I)

Edited by LESTER PACKER

VOLUME 82. Structural and Contractile Proteins

(Part A: Extracellular Matrix)

Edited by Leon W. Cunningham and Dixie W. Frederiksen

VOLUME 83. Complex Carbohydrates (Part D)

Edited by VICTOR GINSBURG

VOLUME 84. Immunochemical Techniques (Part D: Selected Immunoassays)

Edited by John J. Langone and Helen Van Vunakis

VOLUME 85. Structural and Contractile Proteins (Part B: The Contractile Apparatus and the Cytoskeleton)

Edited by Dixie W. Frederiksen and Leon W. Cunningham

VOLUME 86. Prostaglandins and Arachidonate Metabolites

Edited by William E. M. Lands and William L. Smith