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Preface

The purpose of the book is to lead the readers quickly arrive at the area of algebraic
number theory; striving to clearly and briefly interpret both the fundamental and
deepgoing theory from a relatively modern mathematical angle of view.

The book begins with concise ideal-theory in the first three chapters, which
is relatively easy to understand, classical and fundamental, and which draws the
outline of the classical algebraic number theory.

Then in Chapters 4-5, valuation-completion theory and local fields are
developed, which form the basic language and tool of modern approach.

In Chapters 68, the regular materials are treated concisely such as class
numbers, units, quadratic and cyclotomic fields, and brief analytical theory.

In Chapter 9, the important class field theory and idele groups are
expounded.

Finally, algebraic function fields are briefly sketched in Chapter 10.

This book originally grew out of the lectures given at “The National Summer
School of Mathematical Graduates” (Beijing, 1996), and lectures given at
Tsinghua University and University of Science and Technology of China to
graduates for a long term. This is translated from the second and enriched
edition.

Though some impressions of researching and teaching are assimilated into
the book, but only a few of the contents are my independent original innovation
(e.g., part of statements and proofs of the general valuations), most are compiled
and written consulting to literatures (as in the Bibliography), especially [A1],
[A-T], [Deur], [Eich], [Goss], [La], [Lo], [Ma], [Ne], [Rosen], [Sa], [Si], [Sticht],
[Wash], [We], and [Zar]; I am grateful to the authors.

Here, I want to express my special gratitude to Professors Don B. Zagier
and Lawrence C. Washington for their many helps during my studying and
researching on number theory, both in the time in University of Maryland,
USA and in China. Professor Zagier firstly went to our university giving series
of lectures in the spring of 1982, and Professors Washington, K. Rubin, and
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Wen-Ching Winnie Li visited us in 1990, both times I wrote poems. The poem
in 1982 in English is:

Welcome Prof. Zagier

How gorgeous peach flowers

Blossom at the willow’s verdant hair!
Warblers dance swallows sing

To welcome Professor Don Zagier.
So profound and splendid,

Number Theory expounded is without limit;
Ever-lasting and never-ending,

Will Friendship planted grow up just as it.

And the poem in 1990 is :

To Prof. Washington, Rubin, and W. Li
You our best friends landed

near the Forbidden Palace in the May season,
Then lectured with flower petals

raining and dancing in riotous profusion;
Circled around Emperor Lake,

wavering Cyclotomic shadow or reflection,
Zigzagged along the Great Wall,

winding Elliptic curves’ spirit and reason.
Thousand arms of Goddess Guanyin,

almighty, which does Number Theory?
Inexorable doom of Stone Siick and Fermat,

coming, who knows Fates Three?
From ancient times, mathematicians

have much more dreams worry,
Ever afterwards, there will add

you in each of my parting reverie !

The poem records a “bet” of Rubin and Washington on the precedence of fall
of Fermat's Last Conjecture and the Stone Stick of Chengde, which is famous
and like a hug baseball bar standing upside down dangerously on top of a hill
at the city Chengde. The poem also records the sightseeing accompanied by
number theory lectures and discusses.
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Thanks to professors ZENG Kencheng, FENG Keqin, and LU Hongwen for
their helps.

I also thank Doctors WANG Kunpeng, LIU Tong, DI Yanming, QIU Derong,
MA Lianrong, LI Wei, YANG Dong, TIAN Yichao, LI Yan, ZHAO Jia, ZHAO
Yusheng, and HU Su, they very carefully read this book (both the first and
second editions) and contributed many significant corrections and suggestions.

Thanks are also given to Mr. ZHAQO Tianfu, the editor of the book, who
helped to bring about the second edition and this English version completed.

ZHANG Xianke
Tsinghua University
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Preliminaries
— Groups, Rings, Fields, and Modules

Some simple knowledge of abstract algebra and elementary number theory are
needed for reading this book. Here we sketch the most basic part of it, wherewith
to assume notations too. Essential preparatory knowledge will be given in the
text when needed.

(I) For a set A, let Al or # A denote its cardinality (the number of its
elements). Let & denote the empty set. For sets A and B, let A B mean A is
contained in B but may be equal to B; similarly for A o B; let A — B or A\B
denote the complement of set B in set A, and A X B = {(a, b)la € A, b € B} be
the Cartesian product of A and B. For a map (or mapping, or function) f:A —
B, we say f(a) is the image of a, the set

Im f = f(A)={f(a)la e A)

is the image of f, the set f~' (b) = {a@ € Alf(a) = b} is the inverse image of
b € B. We say fis injective (or an injection) if f(a,) = f(a,) implies a; = a,; f
is surjective (or a surjection) if Im f = B, i.e., for each b € B there exists a € A
such that f(a) = b. If fis both injective and surjective, then we say f is bijective
(or a bijection, or a 1:1 correspondence). The composite g o f (or product gf) of
two maps f:A — B and g:B — C is defined by (g o f) (a) = (gf) (a) = g(f(a)).
If S is a subset of A, then a map f:A — B determines another map g:§ — B by
g(s) = f(s); then we say g is a restriction of fto §, denoted by g = flg, and say
fis an extension of g over A, or g is extended to f.

(IT) A group is a set having one operation with inverse operation. Strictly
speaking, a group (G, #) is a set G together with a binary operation “+” on G
satisfying the following (4 axioms) for any a, b, ¢ € G:

(gl) (closeness) axb € G;

(g2) (associative law) a*(b#*c) = (a*b)*c;

(g3) (existing identity) There exists ¢ € G such that exa = axe = a;

(g4) (existing inverses) For each a € G there exists a” € G such thata” * a = a*
a’ = e (We call a’ the inverse of a; call e the identity element or unit element).
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We often refer to the group (G, *) as group G, refer to the operation “x”
as a multiplication, denote a*b as a+b or ab. In that case we call (G, *) a
multiplicative group, write the identity as 1 (instead of e), write the inverse of
aasa .

For a group (G, #*), if the operation “*” further satisfies the commutative
law, i.e., a*b = b*a for any a, b € G, then (G, *) is called abelian group (or
commutative group). For an abelian group (G, *), some times, the operation “*”
is written as “+” and is called addition, denote a* b as a + b. In that case we call
(G, +) an additive group, write the identity as 0 (instead of ¢) called zero element,
write the inverse of a as —a called minus element. For example, the set p,, of all
mth complex roots of unity is a multiplicative abelian group. The set Z of integers
is an additive (abelian) group. The set Z/mZ={0, T,---,ﬁ} of congruent
classes modulo m is an additive group, where a =a+mZ ={a + mklk € Z} is
a congruent class modulo m, and @ +b =a + b.

Informally speaking, a multiplicative group is a set within which we can
multiply and divide (via a/b = ab™"'); an additive group is a set within which
we can add and subtract (via a — b = a + (-b)).

A group G generated by one element is called cyclic group.

If H is a subgroup of group (G, *) (i.e., H € G and (H, *) is a group), then
(G:H) =I|GI/1H| is called the index of H in G. For additive groups A, B, their
(external) direct sumis A ® B = {(a, b)|a € a, b € B} with addition (a, b) + (a’, b’)
=(a+d,b+b). If A, B are subgroups of an additive group G, their sum is
A+B={a+blaeA, be B}, when AN B={0} (ora+ b=d + b implies
a=d,b=10"),then A + B is called (internal) direct sum, denoted by A @ B. For
multiplication groups A, B, there is similar definition about direct product.

The cardinality |G| (the number of elements) of G is called the order of G.
For a (multiplicative) group and any g € G, the smallest integer n(=1) such that
g" = 1 is called the order of g (if n exists), if never g" = 1 then we say g has
order o-. The orders of any subgroup or any element are divisors of |G1.

Assume the (multiplicative) group G has a subgroup H. If for any g € G we
have gH = Hg(i.e., gHg ' = H, or ghg™" € H for any h € H), then we say H is
a normal subgroup of G. In that case we may classify G by H:a, b belong to
the same class if and only if ab~'e H, denoted by a = b(mod H). Each class is
called residue (or congruent) class modulo H. The class represented by a (i.e.,
the class containing a) is just a = aH = {ahlh € H}. Let

G/H={e,a,b,-)

be the set of all the congruent classes. Then G/H is a group, called the quotient
group, or congruent (residue) class group of G modulo H, by the operation

@ b = ab or (aH) (bH) = (ab)H. Of course, for an additive group G, each
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subgroup is naturally normal, so we always may get quotient group G/H, and the
congruent class represented by a is @ = a + H, and @ + b = a + b. For example,
Z17Z = {0, 1, ..., 6} is a quotient group.

Suppose that ¢:G — G’ is a map from group to group. If @ “preserves”
operation, i.e., @(ab) = @(a) @(b) for any a, b € G, then @ is called homomorphism.
And ker @ ={aeGlo(a)=1} is called the kernel of ¢, which is a normal
subgroup of G. The inverse image of any b € G’ is ¢ ' (b) = a, ker @, where
ay € G and @(ay) = b. So a homomorphism @ is an injection (called embedding)
if and only if ker ¢ = {1}. A bijective homomorphism ¢@:G — G’ is called
isomorphism, and then G, G” are said to be isomorphic, denoted by G = G”. For
a homomorphism @: G — G’, here is the fundamental theorem:

G/ker@ =Ime.

Let H, K be subgroups of group G, K is normal in G, then we have naturally
the isomorphism

(HK)/K = H/(K N H).

where HK = {hk|h € H, k € K} is a group, H N K is a normal subgroup of H.
Now assume H D K are normal subgroups of G, then there is naturally an
isomorphism

G _GIK

H HIK

(IIT) A ring is a set within which we can add, subtract, and multiply. Strictly
speaking, aring A is a set, together with two binary operations called addition and
multiplication (and denoted by “+” and “+”. Often write a+b as ab) respectively;
and satisfy conditions:

(r1) (A, +) is an abelian group (whose identity is 0);

(72) (A, ») is a semi-group (i.e., the multiplication satisfies (g1) closeness
and (g2) associative law);

(r3) Distributive law are satisfied (i.e., a(b + ¢)=ab + ac, (b + c¢) a = ba + ca
for any a, b, ¢, € A).

If a ring A has an element e such that ea = ae = a for all a € A, then e is
called identity (element) of A and is denoted by 1 usually. A ring A is said to
be commutative if ab = ba for all a, b € A. In this book, “ring” will mean
“commutative ring with identity” unless otherwise remarking. If ¢, b € A are
nonzero but ab = 0, then a and b are called zero divisors. A commutative ring
with identity 1 # O which contains no zero-divisor is called domain (or integral
ring, or entire ring, or integral domain). Let A be a ring with identity, and a € A,
if there is a’ € A such that aa” = a’a = 1, then we say a is invertible (or a unit
of A), a’ is the inverse of a. The set A* of all units (invertible elements) of A is
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a multiplicative group (unit group). If A* = A — {0} then A is called division
ring (with itdentity). A commutative division ring is called field.

For ring A, let A[X] denote the set of polynomials (formal) over A with
indeterminate X, which is a domain. Similarly, A[X|, ..., X, ] denotes the domain
of all polynomials with n indeterminate. A[[X]] denotes the domain of all formal
power series over A. Let A B be rings and x € B, then A[x] denotes the subring
of B generated by x over A, i.e., the set of all polynomials of x with coefficients
in A. Similarly, A[x,, ..., x,] denotes the subring generated by x,, ..., x, € B
over A.

We assume our rings are commutative rings with identity in the following.
An ideal 7 of a ring A is an additive subgroup of A(as an additive group) which
satisfies the absorbing law: ax € I for all x € [ and a € A. For exmple A and
{0} are ideals, called trivial ideals. A field F has only trivial ideals (since for
O#xe IcFwehavex'eF,1=x"'xel soa-1elforall aeF). For
any subset S = {x;} of a ring A, the set of all 2 @;X; (finite sums, a; € A) is an
ideal, we say it is generated by {x;}, and denoted by AS (or SA, or ({x;}). In
particular, an ideal generated by one element (say x) is called principal ideal
(denoted by Ax, xA or (x)). Two elements x, y € A generate the ideal (x, y) =
Ax + Ay. And (1) = A. For two ideals /, J of ring A, the sum [ + J is the ideal
generated by (elements of) 1, J, i.e., [ +J = {a + bla € I, b € J}, which is just
the minimal ideal containing /, J. The product /J is the set of all the finite sums
Yab, (a;el b;el).

A principal ideal domain (PID) is a domain in which every ideal is
principal. For any a, b € A (a PID), the ideal (a, b) = (d), where d is the greatest
common divisor of a, b. Consequently, there exist «, v € A such that

ua + vb =d (Bezout equality).

Examples of PID: Z(integers), F [X] (polynomials over field F'), and F [[X]]
(formal power series domain, whose ideals are (X"), n 2 0). Note that (3) D (6)
in Z. So in any ring, we denote ideals / © J also by /1J, and say [ is a factor of
J.

An ideal I of ring A is apriori a subgroup of A(as an additive group), so
we have the quotient group A/I. Now we can define multiplication in A//
by @ b = ab, thus A/I becomes a ring, called the quotient ring, or congruent
(residue) class ring of A modulo /. The ideals of the quotient ring A/[ are just
J/1, where J runs over ideals of A containing /. A/I is a field if and only if /
is a maximal ideal (i.e., A has no ideal J between A and I). A/I is a domain if
and only if / is a prime ideal (i.e., xy € [ implies x € [ or y € [). For example,
mZ = {mklk € Z} is an ideal of Z for any integer m, and

ZImZ={0,1,--,m—1}
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is a quotient ring of Z modulo mZ. When m = p is a prime number, F, = Z/pZ
is a field with p elements.

A map f:A — B between rings is called homomorphism if it “preserves”
all operations, i.e., f(a + b) = f(a) + f(b), f(ab) = f(a) f(b), f(1) = 1 (for any
a, b € A). We call a bijective homomorphism f:A — B an isomorphism, and
say then A an B are isomorphic, denote by A = B. For example, if / is an ideal
of A, then f:A — A/l, a — a, is a (canonical) homomorphism.

Similar to additive groups, we have (1) For a homomorphism f:A — B, the
kernel ker f = {a € Alf(a) = 0} is an ideal, and

Alker f=Imf, a+kerf f(a).
(2) Let A D S be rings, I an ideal of A. Then
S+D/MT=SI(SNT), s+I>s+(SNI)

where S + I = {s + x|s € S, x € I} is a ring containing / as an ideal, § N [ is an
ideal of S.
(3) Assume now I o J are ideals of ring A. Then

ézﬂ, a+I—@+J)+11J
I 1/1J
Let A be a domain. We say K = {a/bla, b € A, b # 0} is the quotient field,
or the field of fractions of A. For example, Q is the field of fractions of Z. And
let F[X] be the domain of polynomials of indeterminate X over field F, then the
field of fractions of F[X], denoted by F(X), is called rational function field (or
rational form field) over F. For x, y € K the field of fractions of A, if there exists
a € A such that y = ax, we say x divides y, or x is a factor (divisor) of y, and
y is a multiple of x, denoted by x|y. The set of multiples of x, denoted by Ax,
is a (fractional) ideal generated by x. Obviously, x|y is equivalent to y € Ax or
Ay c Ax. If x|y and ylx, then we say y is an associate of x, which is equivalent
to Ay = Ax or y = ux with u a unit. A proper factor of a means factor of a being
not an associate of 1 and a itself. Let p € A be not zero or a unit, if p has no
proper factor, then we call p irreducible; which means that if p = ab then a or
b is a unit.
If each element (not being zero or a unit) of A could be uniquely (up to units
and factor order) written as a finite product of irreducible elements, then A is
said to be a unique factorization domain (UFD). A PID is a UFD.

(IV) A Field is a set within which we can add, subtract, multiply and
divide. Strictly speaking, a field F is a ring whose non-zero elements form a
multiplicative abelian group. For a field, the additive identity is denoted by 0, the
multiplicative identity is denoted by 1 (or ¢ some times). And for convenience
of writing we assume 2:e=e+e¢=2.1=14+1=2¢€ F, etc.
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Examples of fields: the rational number field Q, the real number fields R,
the complex number field C, and the finite field F, = Z/pZ with p elements.
Two fields are isomorphism if they are so as rings.

If k is a subfield of field F(i.e., k is a subset of F and is a field with the
addition and multiplication in F), then we say F is an extension (field) of k
and denoted by F/k. In that case, F is naturally a vector (linear) space over k,
the dimension of the space is called the degree of the extension F/k, denoted
by [F:k]; the basis of F as a vector space over k is called its k-basis. Extension
with finite degree is called finite extension.

For a field F, if there exists a positive integer p such that p-1 =
1 +1+...+1 € Fisequal to zero, then the least such positive integer p (which is
a prime) is called the characteristic of F (denoted by Chara(F' ) = p); otherwise
(ie,n-1=1+1+ ... + 1 never be zero for any integer n > 0) we say F has
characteristic 0 (denoted by chara(F) = 0). The map 6:n > ne sends Z to F, its
image o(Z) is isomorphic to Z or F,, according to chara(F) = 0 or p respectively.
So up to an isomorphism we may say F is an extension of Q or [, in these two
cases. In a field F with characteristic p, the most peculiarity is pa = 0, and (a
+ b)? = a? + b’ for any a, b € F. For any prime number p and integer n > 1,
there is a unique (up to isomorphism) field with g = p" elements, which is the
extension of degree n over F,, denoted by F,. The set IF; (non-zero elements of
F,) is a cyclic group of order ¢ — 1. So F, consists of the g roots of XP — X.

(V) Modules are natural generalizations of additive groups and vector
(linear) spaces. The definition for a vector space over a field F where “field F”
is replace by “ring A” becomes a definition for a module over ring A. Strictly
speaking, a module M over a ring A is an additive (abelian) group, together with
a scalar multiplication, i.e., a map A x M — M, (a, x) > ax, satisfying

a(x + y)=ax + ay, (a+b)x =ax + bx,
(ab)x = a(bx), Ix=x

(fora, b € A, x, y € M). We also say M is an A-module.

For example, an additive abelian group is a Z-module. A vector space over
a field F is an F-module. Vector space V over F with a transformation o is an
F[X]-module by the *“scalar multiplication™ g (X) o = g (o) o for g(X) € F[X] and
aeV.

Many terms for vector spaces are similarly used also to modules, e.g.,
submodules, linear generate, annihilator, sum, direct sum. For any subset § =
{x;} < M, all the finite sums Z.a,- X; (a; € A) (A-linear combinations) make
an A-module, called submodule’ generated by S, denoted by N = AS, which is
the smallest A-module containing {x;}; and {x;} is a generator system of it.



