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PREFACE

For the first time, this book presents a comprehensive and unifying introduc-
tion to kernel adaptive filtering. Adaptive signal processing theory has been
built on three pillars: the linear model, the mean square cost, and the adaptive
least-square learning algorithm. When nonlinear models are required, the
simplicity of linear adaptive filters evaporates and a designer has to deal with
function approximation, neural networks, local minima, regularization, and so
on. Is this the only way to go beyond the linear solution? Perhaps there is an
alternative, which is the focus of this book. The basic concept is to perform
adaptive filtering in a linear space that is related nonlinearly to the original
input space. If this is possible, then all three pillars and our intuition about
linear models can still be of use, and we end up implementing nonlinear filters
in the input space.

This book will draw on the theory of reproducing kernel Hilbert spaces
(RKHS) to implement the nonlinear transformation of the input to a high-
dimensional feature space induced by a positive-definite function called repro-
ducing kernel. If the filtering and adaptation operations to be performed in
RKHS can be expressed by inner products of projected samples, then
they can be directly calculated by kernel evaluations in the input space. We
use this approach to introduce a family of adaptive filtering algorithms in
RKHS:

+ The kernel least-mean-square algorithm

« The kernel affine projection algorithms

« The kernel recursive least-squares algorithm

« The extended kernel recursive least-squares algorithm

These kernel-learning algorithms bridge closely two important areas of
adaptive filtering and neural networks, and they embody beautifully two
important methodologies of error-correction learning and memory-based
learning. The bottlenecks of the RKHS approach to nonlinear filter design
are the need for regularization, the need to select the kernel function, and
the need to curtail the growth of the filter structure. This book will present in
a mathematically rigorous manner the issues and the solutions to all these
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Xii PREFACE

problems, and it will illustrate with examples the performance gains of kernel
adaptive filtering.

Chapter 1 starts with an introduction to general concepts in machine learn-
ing, linear adaptive filters, and conventional nonlinear methods. Then, the
theory of reproducing kernel Hilbert spaces is presented as the mathematical
foundation of kernel adaptive filters. We stress that kernel adaptive filters are
universal function approximators, have no local minima during adaptation,
and require reasonable computational resources.

Chapter 2 studies the kernel least-mean-square algorithm, which is the
simplest among the family of kernel adaptive filters. We develop the algorithm
in a step-by-step manner and delve into all the practical aspects of selecting
the kernel function, picking the step-size parameter, sparsification, and regu-
larization. Two computer experiments, one with Mackey—Glass chaotic time-
series prediction and the other with nonlinear channel equalization, are
presented.

Chapter 3 covers the kernel affine projection algorithms, which is a family
of four similar algorithms. The mathematical equations of filtering and adapta-
tion are thoroughly derived from first principles, and useful implementation
techniques are discussed fully. Many well-known methods can be derived as
special cases of the kernel affine projection algorithms. Three detailed applica-
tions are included to show their wide applicability and design flexibility.

Chapter 4 presents the kernel recursive least-squares algorithm and the
theory of Gaussian process regression. A sparsification approach called
approximate linear dependency is discussed. And with the aid of the Bayesian
interpretation, we also present a powerful model selection method called
“maximum marginal likelihood”. Two computer experiments are conducted
to study the performance of different sparsification schemes and the effective-
ness of maximum marginal likelihood to determine the kernel parameters.

Chapter S discusses the extended kernel recursive least-squares algorithm
on the basis of the kernel recursive least-squares algorithm. We study system-
atically the problem of estimating the state of a linear dynamic system in
RKHS from a sequence of noisy observations. Several important theorems
are presented with proofs to outline the significance and basic approaches.
This chapter contains two examples, Rayleigh channel tracking and Lorenz
time-series modeling,.

Chapter 6 is devoted to addressing the principal bottleneck of kernel adap-
tive filters, i.e., their growing structure. We introduce a subjective information
measure called surprise and present a unifying sparsification scheme to curtail
the growth effectively of kernel adaptive filters. Three interesting computer
simulations are presented to illustrate the theories.

This book should appeal to engineers, computer scientists, and graduate
students who are interested in adaptive filtering, neural networks, and kernel
methods. A total of 12 computer-oriented experiments are distributed through-
out the book that have been designed to reinforce the concepts discussed in
the chapters. The computer experiments are listed in Table 1. Their MATLARB®
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Table 1. A listing of all computer experiments in the book. MATLAB® programs
that generate the results can be downloaded by all readers from the book’s
website hitp://www.cnel.ufl.edu/~weifeng/publication.htm.

Computer experiment Topic

2.1 KLMS Applied to Mackey—Glass Time-Series Prediction

22 KLMS Applied to Nonlinear Channel Equalization

3.1 KAPA Applied to Mackey—Glass Time-Series Prediction

3.2 KAPA Applied to Noise Cancellation

33 KAPA Applied to Nonlinear Channel Equalization

4.1 KRLS Applied to Mackey—Glass Time-Series Prediction

42 Model Selection by Maximum Marginal Likelihood

5.1 EX-KRLS Applied to Rayleigh Channel Tracking

52 EX-KRLS Applied to Lorenz Time-Series Prediction

6.1 Surprise Criterion Applied to Nonlinear Regression

6.2 Surprise Criterion Applied to Mackey—Glass Time-Series
Prediction

6.3 Surprise Criterion Applied to CO, Concentration
Forecasting

implementations can be downloaded directly from the website http://www.
cnel.ufl.edu/~weifeng/publication.htm. To keep the codes readable, we placed
simplicity over performance during design and implementation. These pro-
grams are provided without any additional guarantees.

We have strived to reflect fully the latest advances of this emerging area
in the book. Each chapter concludes with a summary of the state of the art
and potential future directions for research. This book should be a useful
guide to both those who look for nonlinear adaptive filtering methodologies
to solve practical problems and those who seek inspiring research ideas in
related areas.
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NOTATION

The book discusses many algorithms involving various mathematical equa-
tions. A convenient and uniform notation is a necessity to convey clearly the
basic ideas of the kernel adaptive filtering theory. We think it is helpful to
summarize and explain at the beginning of the text our notational guidelines
for ease of reference.

There are mainly three types of variables we need to distinguish:

scalar, vector, and matrix variables

The following is a list of the notational conventions used in the book:

1.

We use small italic letters to denote scalar variables. For example, the
output of a filter is a scalar variable, which is denoted by y.

. We use CAPITAL ITALIC letters to denote SCALAR CONSTANTS.

For example, the order of a filter is a scalar constant, which is denoted
by L.

We use small bold letters for vectors.

We use CAPITAL BOLD letters to denote MATRICES.

. We use parentheses to denote the time dependency of any variables

(either scalar, vector, or matrix). For example, d(i) means the value of
a scalar d at time (or iteration) i. u(/) means the value of a vector u at
time (or iteration) /. Similarly G(i) means the value of a matrix G at time
(or iteration) i. There is no rule without an exception. f; is used to denote
the estimate of an input-output mapping f at time (or iteration) i since
parenthesis is preserved for input argument like f;(u).

We use the superscript 7" to denote transposition. For example, if

d(1)
4| 4@
d(N)
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xviii NOTATION

then

d’ =[d(1),d(2),...,d(N)].

7. All variables in our presentation are real. We do not discuss complex

numbers in this book.

8. All vectors in our presentation are column vectors without exception.

9. We use subscript indices to denote 1) a component of a vector (or a
matrix), 2) a general vector that the index is not related to time (or
iteration). For example, ¢; could mean the ith vector in some set or the

ith component of the vector ¢ according to the context.

We have made every effort to make the notation consistent and coherent
for the benefit of the reader. The following Table 2 summarizes and lists some

typical examples.

Table 2. Notation.

Description Examples
Scalars Small italic letters d
Vectors Small bold letters W, @, C;
Matrices Capital BOLD letters U, o
Time or iteration Indices in parentheses u(i), d(i)
Component of vectors/matrices Subscript indices a;, G;;
Linear spaces Capital mathbb letters F, H
Scalar constants Capital ITALIC letters L,N




ABBREVIATIONS AND
SYMBOLS

We collect here a list of the main abbreviations and symbols used throughout
the text for ease of reference.

)" vector or matrix transposition

A inverse of matrix A

E['] expected value of a random variable
m(-) the mean of a random variance

o(*) the variance of a random variable
Lo inner product

Il norm of a vector; square root of the inner product with itself
-] absolute value of a real number or determinant of a matrix

oc proportional to

~ distributed according to

\% gradient

0 zero vector or matrix

B forgetting factor

C(i) dictionary or center set at iteration i

d(i) desired output at time or iteration i (a real scalar)

diag{a, b}  a diagonal matrix with diagonal entries @ and b

o) distance threshold in novelty criterion

5 prediction error threshold in novelty criterion

8 threshold in approximate linear dependency test

5 Kronecker delta

Aw(i) weight adjustment at time or iteration i (a column vector in an
Euclidean space)

D data set

e(i) output estimation error at time or iteration i

F feature space induced by the kernel mapping

G Gram matrix of (transformed) input data

H reproducing kernel Hilbert space

Xix



XX ABBREVIATIONS AND SYMBOLS

~
~

AIC

ALD
APA

BIC

CC

CcVv

ENC
EX-RLS
EX-KRLS

identity matrix

error cost at time or iteration i

Kalman gain (or gain vector) at time or iteration i

condition number of a matrix A

kernel (or covariance) function evaluated at u and w’
dimensionality of the input space

regularization parameter

dimensionality of the feature space

misadjustment of the least-mean-square algorithm

additive noise in the state space at time or iteration i

number of training data

step-size parameter

of the order of a number

state-error correlation matrix

a mapping induced by a reproducing kernel

transformed filter input at time or iteration i (a column vector in
a feature space)

transformed input data matrix

covariance matrix of (transformed) input data

the set of real numbers

L-dimensional real Euclidean space

the maximum eigenvalue

trace of matrix A

abnormality threshold in surprise criterion

redundancy threshold in surprise criterion

filter input at time or iteration i (a column vector in an Euclidean
space)

input domain

input data matrix

additive noise in the output at time or iteration i

weight estimate at time or iteration i (a column vector in an
Euclidean space)

weight estimate at time or iteration / (a column vector in a
feature space)

unit delay operator

Akaike information criterion

approximate linear dependency

affine projection algorithm

Bayesian information criterion

coherence criterion

cross-validation

enhanced novelty criterion

extended recursive least squares algorithm
extended kernel recursive least squares algorithm



GPR
LMS
LOOCV
LS
MAP
MDL
MSE
MML
NC
NLMS
KA
KAPA
KLMS
KRLS
PCA
PDF
RAN
RBF
RKHS
RLS
RN
RNN
SC
SNR
SVD
SVM
SW-KRLS

ABBREVIATIONS AND SYMBOLS

Gaussian process regression
least-mean-square algorithm
leave-one-out cross-validation

least squares

maximum a posterior

minimum description length

mean square error

maximum marginal likelihood

novelty criterion

normalized least-mean-square algorithm
kernel ADALINE

kernel affine projection algorithm
kernel least-mean-square algorithm
kernel recursive least-squares algorithm
principal components analysis
probability density function

resource allocating network

radial-basis function

reproducing kernel Hilbert space
recursive least-squares algorithm
regularization network

recurrent neural network

surprise criterion

signal-to-noise ratio

singular value decomposition

support vector machine

sliding window kernel recursive least-squares algorithm
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