ulence

from

tirst Principles

3

Physics Research and
Technology

TN

M:cﬁazf Zak



PHYSICS RESEARCH AND TECHNOLOGY

TURBULENCE FROM
FIRST PRINCIPLES

New York



Copyright © 2013 by Nova Science Publishers, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical
photocopying, recording or otherwise without the written permission of the Publisher.

For permission to use material from this book please contact us:
Telephone 631-231-7269; Fax 631-231-8175
Web Site: http://www.novapublishers.com

NOTICE TO THE READER

The Publisher has taken reasonable care in the preparation of this book, but makes no expressed
or implied warranty of any kind and assumes no responsibility for any errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of
information contained in this book. The Publisher shall not be liable for any special,
consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or
reliance upon, this material. Any parts of this book based on government reports are so indicated
and copyright is claimed for those parts to the extent applicable to compilations of such works.

Independent verification should be sought for any data, advice or recommendations contained in
this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage
to persons or property arising from any methods, products, instructions, ideas or otherwise
contained in this publication.

This publication is designed to provide accurate and authoritative information with regard to the
subject matter covered herein. It is sold with the clear understanding that the Publisher is not
engaged in rendering legal or any other professional services. If legal or any other expert
assistance is required, the services of a competent person should be sought. FROM A
DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE
AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS.

Additional color graphics may be available in the e-book version of this book.

LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA

Zak, Michail, 1932-
Turbulence from first principles / Michail Zak.
pages cm
Includes bibliographical references and index.
ISBN 978-1-62808-468-9 (soft cover)
1. Turbulence. 2. Turbulence--Mathematical models. I. Title.
QA913.Z35 2013
532'.05270151--dc23
2013025326

Published by Nova Science Publishers, Inc. 7 New York



PHYSICS RESEARCH AND TECHNOLOGY

TURBULENCE FROM
FIRST PRINCIPLES



PHYSICS RESEARCH AND TECHNOLOGY

Additional books in this series can be found on Nova’s website
under the Series tab.

Additional e-books in this series can be found on Nova’s website
under the e-book tab.
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“When everything goes to hell, the people who stand by you without
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PREFACE

Turbulence is the most important unsolved problem of classical physics.
Richard Feynman

This book presents a non-traditional approach to theory of turbulence. Its
objective is to prove that Newtonian mechanics is fully equipped for
description of turbulent motions without help of experimentally obtained
closures. Turbulence is one of the most fundamental problems in theoretical
physics that is still unsolved. The term “unsolved “ here means that turbulence
cannot be properly formulated, i.e. reduced to standard mathematical
procedure such as solving differential equations. In other words, it is not just a
computational problem: prior to computations, a consistent mathematical
model must be found. Although applicability of the Navier-Stokes equations
as a model for fluid mechanics is not in question, the instability of their
solutions for flows with supercritical Reynolds numbers raises a more general
question: is Newtonian mechanics complete?

The problem of turbulence (stressed later by the discovery of chaos)
demonstrated that the Newton’s world is far more complex than those
represented by classical models. It appears that the Lagrangian or Hamiltonian
formulations do not suggest any tools for treating postinstability motions, and
this is a major flaw of the classical approach to Newtonian mechanics. The
explanation of that limitation is proposed in this book: the classical formalism
based upon the Newton’s laws exploits additional mathematical restrictions
(such as space-time differentiability, and the Lipchitz conditions) that are not
required by the Newton’s laws. The only purpose for these restrictions is to
apply a powerful technique of classical mathematical analysis. However, in
many cases such restrictions are incompatible with physical reality, and the
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most obvious case of such incompatibility is the Euler’s model of inviscid
fluid in which absence of shear stresses are not compensated by a release of
additional degrees of freedom as required by the principles of mechanics.

Chapter | presents a brief review of standard mathematical approach to
fluids that includes inviscid/viscose and incompressible/compressible models.
Omitting mathematical details, attention is concentrated on inconsistencies and
paradoxes that limit the boundary of applicability of these models. The main
objective of this Chapter is to prepare a reader to a revision of the
Euler/Navier-Stokes equations for describing turbulent motions.

Chapter 2 introduces and illustrates the Stabilization Principle that
provides a strategy for modeling post instability behavior in dynamics,
including turbulence and chaos. It starts with investigation of different types of
instability in fluids with the objective to demonstrate that stability is not a
physical invariant since it depends upon the frame to which the motion of fluid
is referred, upon the class of functions in which the governing equations are
derived, ect. The application of the Stabilization Principle to the Navier-Stokes
equations is illustrated by closure of the Reynolds equations for the Poiseuille
flow.

In Chapter 3, it has been demonstrated that according to the principle of
release of constraints, absence of shear stresses in the Euler equations must be
compensated by additional degrees of freedom, and that led to a Reynolds-type
enlarged Euler equations (EE equations) with a doublevalued velocity field
that do not require any closures. In the first part of this Chapter, the theory is
applied to turbulent mixing and illustrated by propagation of mixing zone
triggered by a tangential jump of velocity. A comparison of the proposed
solution with the Prandtl’s solution is performed and discussed. In the second
part of the Chapter, a semi-viscous version of the Navier-Stokes equations is
introduced. The model does not require any closures since the number of
equations is equal to the number of unknowns. Special attention is paid to
transition from laminar to turbulent state. The analytical solution for this
transition demonstrates the turbulent mean velocity profile that deviates from
the laminar one.

Chapter 4 is devoted to Lagrangian turbulence and Chaos. The Lagrangian
turbulence is defined as postinstability motion of individualized trajectories of
a fluid generated by a laminar flow. The formulation of L-turbulence is
reduced to a system of three nonlinear ODE describing kinematics of
transition from Euler’s to Lagrange’s frames of reference. It has been
demonstrated that the complexity of this ODE is equivalent to that of the
simplest chaotic systems like a Lorentz attractor. Applications of the
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Stabilizaion Principle to Lagrangian turbulence with generalization to the
Navier-Stokes equations and n-body problems as well as a computational
strategy are discussed.

Chapter 5 presents a revision of the mathematical formalism of fluid
dynamics, and in particular, some physical inconsistencies (infinite time of
approaching equilibrium and fully deterministic solutions of the Navier-Stokes
equations). As shown there, these inconsistencies can be removed by relaxing
the Lipchitz conditions, i.e., the boundedness of the derivatives in the
constitutive equations. Physically such a modification can be interpreted as an
incorporation of an infinitesimal static friction in the constitutive law. A
modified version of the Navier-Stokes equations is introduced, discussed, and
illustrated by examples. It is demonstrated that all the new effects in the
modified model emerge within vanishingly small neighborhoods of
equilibrium states that are the only domains where the governing equations are
different from the classical equations.

The accessible presentation of this book makes it eminently suitable for
graduate students, researchers and engineers in the areas of fluid mechanics,
general physics and applied mathematics.
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Chapter 1

MATHEMATICAL MODELS OF FLUIDS

It would be better for the true physics if
there were no mathematicians in the world.
Daniel Bernoulli

ABSTRACT

This Chapter presents a brief review of standard mathematical
approach to fluids that includes inviscid/viscose and incompressible/
compressible models. Omitting mathematical details, attention is
concentrated on inconsistencies and paradoxes that limit the boundary of
applicability of these models. The main objective of this Chapter is to
prepare a reader to a revision of the Euler/Navier-Stokes equations for
describing turbulent motions.

1. DEFINITIONS

Motion of a fluid is considered uniquely defined if its velocity field
v(x,t) can be found at any point x of the volume it occupies at any instant of
time ¢. Besides of that, the parameters describing the state of the fluid — the
density p(x,t ) the pressure p(x,t ) and the temperature 7(x,#) must be
defined as well.

Mathematical description of fluid motions required appropriate
mathematical models that take into account only the most important physical
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property of a chosen phenomenon since the more specific the model the more
transparent the connections with mathematics and reality. In our brief review
we consider the models in the order of their complexity: inviscid
incompressible fluid, inviscid compressible fluid, and viscous fluid. But it
does not mean that the more complex model is always covers all the properties
of the less complex one. For instance, shock waves are usually studied in
invicsid rather than in viscous model since there their study is simpler and
more transparent; the condition of incompressibility representing a global
constrain is not always convenient and it is replaced by artificial
compressibility, etc.

The governing equations describing the change of the state variables listed
above can be derived from the Newton Laws, or from the Variational
Principles, but in all cases, prior to derivations, the following condition is
imposed: all the functions describing the state variables must be twice-
differentiable with respect to time t and space variables x. It should be
emphasized that this limitation is not required by physics: it is required by
mathematicians in order to reduce the model to a well-established
mathematical formalism of differential equations. The consequences of this
compromise are the central point of this book.

2. MODEL OF INVISCID INCOMPRESSIBLE FLUID

Inviscid fluid, by definition, does not have friction forces, while normal
stress is always directed inside of the selected volume. Therefore, the stress
tensor is spherical, Figure 1.

Figure 1. Spherical pressure tensor.
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T=—%pE, p<0 (1.1)

The mathematical formulation of incompressibility is represented as
V-v=0 (1.2)
Then the equation of motion follows from the second Newton’s law is

N vWy=-Lvp+F (1.3)

ot p
where F is external force per unit mass.
Egs. (1.2) and (1.3) form a closed system of PDE to be solved subject to

specific initial and boundary conditions.
The boundary conditions at a surface separating two different flows are

V,'n=v, -n (the free-slip condition) (1.4)

p, =D, (1.5)
in which n is the normal to this surface, and v,,v; are velocities at this surface.
If the surface is represented by a rigid wall, Eq. (1.5) should be

eliminated.
Let us turn to a particular case when the external force has a potential U

F=-VU (1.6)
and the motion starts from rest. Then its velocity has a potential (D as well

v=Vo (1.7)
and therefore, its vortex vector Q is zero

Q=Vxv=0 (1.8)
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In this particular case, the system (1.2) and (1.3) is reduced to the Cauchy
integral

99+lv2+U+£:<D(1) (1.9)
or 2 p

in which ®(¢)is an arbitrary function, and the Laplace equation
Ap=0 (1.10)

Eq. (1.10), subject to appropriate initial and boundary conditions, uniquely
defines the velocity potential (P, and therefore, the velocity field v. Then the

pressure p is found from Eq. (1.9), while the arbitrary function ®(t)is defined

if the function p (7) is known in one point of the space.

Thus, on the first sight, the potential model (1.9), (1.10) seems perfect: it
is reduced to a well behaved Laplace equation, and uniqueness of solution
subject to appropriate boundary conditions is guaranteed. However more
detailed analysis discovers paradoxes and inconsistencies of the model. The
most damaging, zero-drag paradox was introduced by D’Alembert in 1752,
[1]. As demonstrated in Figure 1, the potential flow around a circular cylinder
is symmetric, and it cannot generate any drag. In addition to that, exact
solutions predict infinite velocity at the sharp edges of boundaries, Figure 2.
The absurdity of the exact solution alerted scientists and undermined their
confidence in the model.

Figure 2. Streamlines for the potential flow around a circular cylinder in a uniform
onflow.



