

Agile Software
Architecture

Aligning Agile Processes and
Software Architectures

Edited by
Muhammad Ali Babar
Alan W. Brown

lvan Mistrik

SENS AMSTERDAM * BOSTON HEIDELBERG * LONDON
W NEW YORK * OXFORD @ PARIS * SAN DIEGO
SAN FRANCISCO * SINGAPORE * SYDNEY * TOKYO

Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Todd Green

Editorial Project Manager: Lindsay Lawrence
Project Manager: Punithavathy Govindaradjane
Designer: Maria Inés Cruz

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright (. 2014 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitied in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further information
about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright
Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/
permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices, may become necessary.
Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information or methods described herein. In using such information or methods they should
be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Agile software architecture : aligning agile processes and software architectures / edited by Muhammad
Ali Babar, Alan W. Brown, Ivan Mistrik.
pages cm
Includes bibliographical references and index.
ISBN 978-0-12-407772-0 (pbk.)
1. Agile software development. 2. Software architecture. 1. Ali Babar, Muhammad. II. Brown.
Alan W., 1962- IIl. Mistrik, Ivan.
QA76.76.D47A3844 2013
005.1'2—dc23
2013040761
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-407772-0

This book has been manufactured using Print On Demand technology. Each copy is produced to order and
is limited to black ink. The online version of this book will show color figures where appropriate.

E Working together
m to grow libraries in

asvix | BookMd Jeveloping countries

www.elsevier.com ¢ www.bookaid.org

For information on all MK publications visit our website at www.mkp.com

Agile Software
Architecture

AL, B2 #EPDFIE UG 9] : www. ertongbook. com

Acknowledgments

The editors would like to acknowledge the significant effort Kai Koskimies made
during different phases of this book’s editing phases. Judith Stafford also helped
in framing the initial proposal for this book. We also sincerely thank many authors
who contributed their works to this book. The international team of anonymous
reviewers gave detailed feedback on early versions of chapters and helped us to
improve both the presentation and accessibility of the work. Ali Babar worked on this
project while based at Lancaster University UK and IT University of Copenhagen,
Denmark. Finally, we would like to thank the Elsevier management and editorial
teams, in particular to Todd Green and Lindsay Lawrence, for the opportunity
to produce this unique collection of articles covering the wide range of areas related
to aligning agile processes and software architectures.

Xv

About the Editors

MUHAMMED ALI BABAR

Dr. M. Ali Babar is a Professor of Software Engineering (Chair) at the School of
Computer Science, the University of Adelaide, Australia. He also holds an Asso-
ciate Professorship at IT University of Copenhagen, Denmark. Prior to this, he
was a Reader in Software Engineering at Lancaster University UK. Previously,
he worked as a researcher and project leader in different research centers in
Ireland and Australia. He has authored/co-authored more than 140 peer-reviewed
research papers in journals, conferences, and workshops. He has co-edited a book,
Software Architecture Knowledge Management: Theory and Practice. Prof. Ali
Babar has been a guest editor of several special issues/sections of /EEE Software,
JSS, ESEJ, SoSyM, IST, and REJ. Apart from being on the program committees of
several international conferences such as WICSA/ECSA, ESEM, SPLC, ICGSE,
and ICSSP for several years, Prof. Ali Babar was the founding general chair of
the Nordic-Baltic Symposium on Cloud Computing and Internet Technologies
(NordiCloud) 2012. He has also been co-(chair) of the program committees of
several conferences such as NordiCloud 2013, WICSA/ECSA 2012, ECSA2010,
PROFES2010, and ICGSE2011. He is a member of steering committees of
WICSA, ECSA, NordiCloud and ICGSE. He has presented tutorials in the areas
of cloud computing, software architecture and empirical approaches at various
international conferences. Prior to joining R&D field, he worked as a software
engineer and an IT consultant for several years in Australia. He obtained a
PhD in computer science and engineering from University of New South Wales,
Australia.

ALAN W. BROWN

Alan W. Brown is Professor of Entrepreneurship and Innovation in the Surrey Busi-
ness School, University of Surrey, UK. where he leads activities in the area of cor-
porate entrepreneurship and open innovation models. In addition to teaching
activities, he focuses on innovation in a number of practical research areas with
regard to global enterprise software delivery, agile software supply chains, and
the investigation of "open commercial" software delivery models. He has formerly
held a wide range of roles in industry, including Distinguished Engineer and CTO at
IBM Rational, VP of Research at Sterling Software, Research Manager at Texas
Instruments Software, and Head of Business Development in a Silicon Valley
startup. In these roles Alan has worked with teams around the world on software
engineering strategy, process improvement, and the transition to agile delivery
approaches. He has published over 50 papers and written four books. He holds a
Ph.D. in Computing Science from the University of Newcastle upon Tyne, UK.

Xvii

xviii

About the Editors

IVAN MISTRIK

Ivan Mistrik is a computer scientist who is interested in system and software engi-
neering (SE/SWE) and in system and software architecture (SA/SWA); in particular,
he is interested in life cycle system/software engineering, requirements engineering,
relating software requirements and architectures, knowledge management in soft-
ware development, rationale-based software development, aligning enterprise/sys-
tem/software architectures, and collaborative system/software engineering. He has
more than forty years’ experience in the field of computer systems engineering as
an information systems developer, R&D leader, SE/SA research analyst, educator
in computer sciences, and ICT management consultant. In the past 40 years, he
has worked primarily at various R&D institutions and has consulted on a variety
of large international projects sponsored by ESA, EU, NASA, NATO, and UN.
He has also taught university-level computer sciences courses in software engineer-
ing, software architecture, distributed information systems, and human-computer
interaction. He is the author or co-author of more than 80 articles and papers that
have been published in international journals and books and presented at interna-
tional conferences and workshops; most recently, he wrote the chapter “Capture
of Software Requirements and Rationale through Collaborative Software Develop-
ment” in the book Requirements Engineering for Sociotechnical Systems, the paper
“Knowledge Management in the Global Software Engineering Environment,” and
the paper “Architectural Knowledge Management in Global Software Develop-
ment.” He has also written over 90 technical reports and presented over 70 scien-
tific/technical talks. He has served on many program committees and panels of
reputable international conferences and organized a number of scientific workshops,
most recently two workshops on Knowledge Engineering in Global Software Devel-
opment at the International Conference on Global Software Engineering 2009 and
2010. He has been a guest editor of IEE Proceedings Software: A Special Issue
on Relating Software Requirements and Architectures, published by IEE in 2005.
He has also been lead editor of the book Rationale Management in Software Engi-
neering, published in 2006; the book Collaborative Software Engineering, published
in 2010; and the book Relating Software Requirements and Architectures, published
in 2011. He has also co-authored the book Rationale-Based Software Engineering,
published in May 2008. He is a lead editor of the Expert Systems Special Issue on
Knowledge Engineering in Global Software Development to be published in
2012, and he has organized the IEEE International Workshop on the Future of Soft-
ware Engineering for/in the Cloud (FoSEC) that was held in conjunction with [EEE
Cloud 2011. He was a guest editor of the Journal of Systems and Software Special
Issue on the Future of Software Engineering forlin the Cloud in 2013 and a lead
editor of the book on Aligning Enterprise, System, and Software Architectures to
be published in 2012.

List of Contributors

Sarah Al-Azzani
University of Birmingham, Birmingham, UK

Ahmad Al-Natour
University of Birmingham, Birmingham, UK

Paris Avgeriou
University of Groningen, Groningen, The Netherlands

Muhammad Ali Babar
The University of Adelaide, Adelaide, SA, Australia

Rami Bahsoon
University of Birmingham, Birmingham, UK

Kawtar Benghazi
Universidad de Granada, Granada, Spain

Jan Bosch
Chalmers University of Technology, Gothenburg, Sweden

Georg Buchgeher
Software Competence Center Hagenberg (SCCH), Hagenberg, Austria

Lawrence Chung
University of Texas at Dallas, Richardson, TX, USA

James 0. Coplien
Gertrud & Cope, Espergarde, Denmark

Jane Cleland-Huang
DePaul University, Chicago, IL, USA

Adam Czauderna
DePaul University, Chicago, IL, USA

Jessica Diaz
Universidad Politécnica de Madrid (Technical U. of Madrid), Madrid, Spain

Peter Eeles
IBM, London, UK

Veli-Pekka Eloranta
Tampere University of Technology, Tampere, Finland

Uwe Friedrichsen
Codecentric AG, Solingen, Germany

Matthias Galster
University of Canterbury, Christchurch, New Zealand

Xix

XX List of Contributors

Juan Garbajosa
Universidad Politécnica de Madrid (Technical U. of Madrid), Madrid, Spain

Stephen Harcombe
Northwich, Cheshire, UK

Richard Hopkins
IBM, Cleveland, UK

Ben Isotta-Riches
Aviva, Norwich, UK

Kai Koskimies
Tampere University of Technology, Tampere, Finland

José Luis Garrido
Universidad de Granada, Granada, Spain

Mehdi Mirakhorli
DePaul University, Chicago, IL, USA

Manuel Noguera
Universidad de Granada, Granada, Spain

Jennifer Pérez
Universidad Politécnica de Madrid (Technical U. of Madrid), Madrid, Spain

Janet Randell
Aviva, Norwich, UK

Trygve Reenskaug
University of Oslo, Oslo, Norway

Antonio Rico
Universidad de Granada, Granada, Spain

Jan Salvador van der Ven
Factlink, Groningen, The Netherlands

Michael Stal
Siemens AG, Corporate Research & Technology, Munich, Germany

Rainer Weinreich

Johannes Kepler University Linz, Linz, Austria

Agustin Yagiie

Universidad Politécnica de Madrid (Technical U. of Madrid), Madrid, Spain

Foreword by John Grundy

Architecture vs Agile: competition or
cooperation?

Until recently, conventional wisdom has held that software architecture design and
agile development methods are somehow “incompatible,” or at least they generally
work at cross-purposes [1]. Software architecture design has usually been seen by
many in the agile community as a prime example of the major agile anti-pattern
of “big design up front.” On the other hand, agile methods have been seen by many
of those focusing on the discipline of software architecture as lacking sufficient fore-
thought, rigor, and far too dependent on “emergent” architectures (a suitable one of
which may never actually emerge). In my view, there is both a degree of truth and a
substantial amount of falsehood in these somewhat extreme viewpoints. Hence, the
time seems ripe for a book exploring leading research and practice in an emerging
field of “‘agile software architecture,” and charting a path for incorporating the best of
both worlds in our engineering of complex software systems.

In this foreword, I briefly sketch the background of each approach and the anti-
agile, anti-software architecture viewpoints of both camps, as they seem to have -
become known. 1 deliberately do this in a provocative and all-or-nothing way, mainly
to set the scene for the variety of very sensible, balanced approaches contained in this
book. I hope to seed in the reader’s mind both the traditional motivation of each
approach and how these viewpoints of two either-or, mutually exclusive approaches
to complex software systems engineering came about. I do hope that it is apparent
that I myself believe in the real benefits of both approaches and that they are certainly
in no way incompatible; agile software architecting—or architecting for agile, if you
prefer that viewpoint—is both a viable concept and arguably the way to approach the
current practice of software engineering.

SOFTWARE ARCHITECTURE—THE “TRADITIONAL” VIEW

The concept of “software architecture”—both from a theoretical viewpoint as a
means of capturing key software system structural characteristics [2] and practi

techniques to develop and describe [3, 4]—emerged in the early to mid-1980s)
in response to the growing complexity and diversity of software systems. Praeti-
tioners and researchers knew implicitly that the concept of a “‘software architecture”
existed in all but the most trivial systems. Software architecture incorporated ele-
ments including, but not limited to, human machine interfaces, databases, servers,
networks, machines, a variety of element interconnections, many diverse element
properties, and a variety of further structural and behavioral subdivisions (thread

XXii

Foreword by John Grundy

management, proxies, synchronization, concurrency, real-time support, replication,
redundancy, security enforcement, etc.). Describing and reasoning about these ele-
ments of a system became increasingly important in order to engineer effective solu-
tions, with special purpose “architecture description languages” and a wide variety of
architecture modeling profiles for the Unified Modeling Language (UML). Software
architecting includes defining an architecture from various perspectives and levels of
abstraction, reasoning about the architecture’s various properties, ensuring the archi-
tecture is realizable by a suitable implementation which will meet system require-
ments, and evolving and integrating complex architectures.

A number of reusable “architecture patterns” [3] have emerged, some addressing
quite detailed concerns (e.g., concurrency management in complex systems), with
others addressing much larger-scale organizational concerns (e.g., multitier architec-
tures). This allowed a body of knowledge around software architecture to emerge,
allowing practitioners to leverage best-practice solutions for common problems
and researchers to study both the qualities of systems in use and to look for improve-
ments in software architectures and architecture engineering processes.

The position of “software architecting” in the software development lifecycle
was (and still is) somewhat more challenging to define. Architecture describes the
solution space of a system and therefore traditionally is thought of as an early part
of the design phase [3, 4]. Much work has gone into developing processes to support
architecting complex systems, modeling architectures, and refining and linking
architectural elements into detailed designs and implementations. Typically, one
would identify and capture requirements, both functional and nonfunctional, and
then attempt to define a software architecture that meets these requirements.

However, as all practitioners know, this is far easier said than done for many real-
world systems. Different architectural solutions themselves come with many
constraints—which requirements can be met and how they can be met, particularly
nonfunctional requirements, are important questions. Over-constrained requirements
may easily describe a system that has no suitable architectural realization. Many soft-
ware applications are in fact “systems of systems” with substantive parts of the appli-
cation already existent and incorporating complex, existent software architecture
that must be incorporated. In addition, architectural decisions heavily influence
requirements, and coevolution of requirements and architecture is becoming a com-
mon approach [5]. Hence, software architectural development as a top-down process
is under considerable question.

AGILE METHODS—THE “TRADITIONAL” VIEW

The focus in the 1980s and 90s on extensive up-front design of complex systems,
development of complex modeling tools and processes, and focus on large invest-
ment in architectural definition (among other software artifacts) were seen by many
to have some severe disadvantages [6]. Some of the major ones identified included

Software Architecture—Strengths and Weaknesses with Regard to Agility xxiii

over-investment in design and wasted investment in over-engineering solutions,
“inability to incorporate poorly defined and/or rapidly changing requirements, inabil-
ity to change architectures and implementations if they proved unsuitable, and lack
of a human focus (both customer and practitioner) in development processes and
methods. In response, a variety of “agile methods” were developed and became
highly popular in the early to mid- 2000s. One of my favorites and one that I think
exemplifies the type is Kent Beck’s eXtreme Programming (XP) [7].

XP is one of many agile methods that attempt to address these problems all the
way from underlying philosophy to pragmatic deployed techniques. Teams comprise
both customers and software practitioners. Generalist roles are favored over special-
ization. Frequent iterations deliver usable software to customers, ensuring rapid
feedback and continuous value delivery. Requirements are sourced from focused
user stories, and a backlog and planning game prioritizes requirements, tolerating
rapid evolution and maximizing value of development effort. Test-driven develop-
ment ensures requirements are made tangible and precise via executable tests. In
each iteration, enough work is done to pass these tests but no more, avoiding
over-engineering. Supporting practices, including 40-hour weeks, pair program-
ming, and customer-on-site avoid developer burnout, support risk mitigation and
shared ownership, and facilitate human-centric knowledge transfer.

A number of agile approaches to the development of a “software architecture”
exist, though most treat architecture as an “emergent” characteristic of systems.
Rather than the harsjﬁly criticized “big design up front” architecting approaches of
other methodologies, spikes and refactoring are used to test potential solutions
and continuously refine architectural elements in a more bottom-up way. Architec-
tural spikes in particular give a mechanism for identifying architectural deficiencies
and experimenting with practical solutions. Refactoring, whether small-scale or
larger-scale, is incorporated into iterations to counter “bad smells,”—which include
architectural-related problems including performance, reliability, maintainability,
portability, and understandability. These are almost always tackled on a need-to
basis, rather than explicitly as an up-front, forward-looking investment (though they
of course may bring such advantages).

SOFTWARE ARCHITECTURE—STRENGTHS AND WEAKNESSES
WITH REGARD TO AGILITY

Up-front software architecting of complex systems has a number of key advantages
[8]. Very complex systems typically have very complex architectures, many compo-
nents of which may be “fixed” as they come from third party systems incorporated
into the new whole. Understanding and validating a challenging set of requirements
may necessitate modeling and reasoning with a variety of architectural solutions,
many of which may be infeasible due to highly constrained requirements. Some
requirements may need to be traded off against others to even make the overall

XXiv

Foreword by John Grundy

system feasible. It has been found in many situations to be much better to do this in
advance of a large code base and complex architectural solution to try and refactor
[8]. It is much easier to scope resourcing and costing of systems when a software
architecture that documents key components exists upfront. This includes costing
nonsoftware components (networks, hardware), as well as necessary third party soft-
ware licenses, configuration, and maintenance.

A major criticism of upfront architecting is the potential for over-engineering and
thus over-investment in capacity that may never be used. In fact, a similar criticism
could be leveled in that it all too often results in an under-scoped architecture and
thus under-investing in required infrastructure, one of the major drivers in the move
to elastic and pay-as-you-go cloud computing [9]. Another major criticism is
the inability to adapt to potentially large requirements changes as customers repri-
oritize their requirements as they gain experience with parts of the delivered system
[6]. Upfront design implies at least some broad requirements—functional and
nonfunctional—that are consistent across the project lifespan. The relationship
between requirements and software architecture has indeed become one of mutual
influence and evolution [5].

AGILE—STRENGTHS AND WEAKNESSES WITH REGARD
TO SOFTWARE ARCHITECTURE -

A big plus of agile methods is their inherent tolerance—and, in fact, encouragement—
of highly iterative, changeable requirements, focusing on delivering working, valuable
software for customers. Almost all impediments to requirements change are removed;
in fact, many agile project-planning methods explicitly encourage reconsideration of
requirements and priorities at each iteration review—the mostly widely known and
practiced being SCRUM [10]. Architectural characteristics of the system can be
explored using spikes and parts found wanting refactored appropriately. Minimizing
architectural changes by focusing on test-driven development—incorporating appro-
priate tests for performance, scaling, and reliability—goes a long way to avoiding
redundant, poorly fitting, and costly over-engineered solutions.

While every system has a software architecture, whether designed-in or emer-
gent, experience has shown that achieving a suitably complex software architecture
for large-scale systems is challenging with agile methods. The divide-and-conquer
approach used by most agile methods works reasonably well for small and some
medium-sized systems with simple architectures. It is much more problematic for
large-scale system architectures and for systems incorporating existent (and possibly
evolving!) software architectures [8]. Test-driven development can be very challeng-
ing when software really needs to exist in order to be able to define and formulate
appropriate tests for nonfunctional requirements. Spikes and refactoring support
small-system agile architecting but struggle to scale to large-scale or even
medium-scale architecture evolution. Some projects even find iteration sequences

Bringing the Two Together—Agile Architecting or Architecting for Agile? XXV

become one whole refactoring exercise after another, in order to try and massively
reengineer a system whose emergent architecture has become(umenable D

BRINGING THE TWO TOGETHER—AGILE ARCHITECTING
OR ARCHITECTING FOR AGILE?

Is there a middle ground? Can agile techniques sensibly incorporate appropriate
levels of software architecture exploration, definition, and reasoning, before exten-
sive code bases using an inappropriate architecture are developed? Can software
architecture definition become more “agile,” deferring some or even most work until
requirements are clarified as develop unfolds? Do some systems best benefit from
some form of big design up front architecting but can then adopt more agile
approaches using this architecture? On the face of it, some of these seem counter-
intuitive and certainly go against the concepts of most agile methods and software
architecture design methods.

However, I think there is much to be gained by leveraging strengths from each
approach to mitigate the discovered weaknesses in the other. Incorporating software
architecture modeling, analysis, and validation in “architectural spikes” does not
seem at all unreasonable. This may include fleshing out user stories that help to sur-
face a variety of nonfunctional requirements. It may include developing a variety of
tests to validate that these requirements are met. If a system incorporates substantive
existing system architecture, exploring interaction with interfaces and whether the
composite system meets requirements by appropriate test-driven development seems
like eminently sensible early-phase, high-priority work. Incorporating software
architecture-related stories as priority measures in planning games and SCRUM-
based project management also seems compatible with both underlying conceptual
models and practical techniques. Emerging toolsets for architecture engineering, par-
ticularly focusing on analyzing nonfunctional properties, would seem to well support
and fit agile practices.

Incorporating agile principles into software architecting processes and tech-
niques also does not seem an impossible task, whether or not the rest of a project
uses agile methods. Iterative refinement of an architecture—including some form
of user stories surfacing architectural requirements, defining tests based on these
requirements, rapid prototyping to exercise these tests, and pair-based architecture
modeling and analysis—could all draw from the demonstrated advantages of agile
approaches. A similar discussion emerges when trying to identify how to leverage
design patterns and agile methods, user-centered design and agile methods, and
model-driven engineering and agile methods [1, 11, 12]. In each area, a number
of research and practice projects are exploring how the benefits of agile methods
might be brought to these more “traditional” approaches to software engineering,
and how agile approaches might incorporate well-known benefits of patterns, User
Centered Design (UCD), and Model Driven Engineering (MDE).

XXVi

Foreword by John Grundy

LOOKING AHEAD

Incorporating at least some rigorous software architecting techniques and tools into
agile approaches appears—to me, at least—to be necessary for successfully engi-
neering many nontrivial systems. Systems made up of architectures from diverse
solutions with very stringent requirements, particularly challenging, nonfunctional
ones, really need careful look-before-you-leap solutions. This is particularly so
when parts of the new system or components under development may adversely
impact existing systems (e.g., introduce security holes, privacy breaches, or
adversely impact performance, reliability, or robustness). Applying a variety of agile
techniques—and the philosophy of agile—to software architecting also seems highly
worthwhile. Ultimately, the purpose of software development is to deliver high-
quality, on-time, and on-budget software to customers, allowing for some sensible
future enhancements. A blend of agile focus on delivery, human-centric support
for customers and developers, incorporating dynamic requirements, and—where
possible—avoiding over-documenting and over-engineering exercises, all seem to
be of benefit to software architecture practice.

This book goes a long way toward realizing these trends of agile architecting and
architecting for agile. Chapters include a focus on refactoring architectures, tailoring
SCRUM to support more agile architecture practices, supporting an approach of
continuous architecture analysis, and conducting architecture design within an agile
process. Complementary chapters include analysis of the emergent architecture con-
cept, driving agile practices by using architecture requirements and practices, and
mitigating architecture problems found in many conventional agile practices.

Three interesting works address other topical areas of software engineering: engi-
neering highly adaptive systems, cloud applications, and security engineering. Each
of these areas has received increasing attention from the research and practice com-
munities. In my view, all could benefit from the balanced application of software
architecture engineering and agile practices described in these chapters.

I do hope that you enjoy this book as much as I enjoyed reading over the contri-
butions. Happy agile software architecting!

John Grundy
Swinburne University of Technology,
Hawthorn, Victoria, Australia

References

[1] Nord RL, Tomayko JE. Software architecture-centric methods and agile development.
IEEE Software 2006;23(2):47-53.

[2] Garlan D, Shaw M. Software architecture: perspectives on an emerging discipline. Angus &
Robertson; 1996.

[3] Bass L, Clements P, Kazman R. Software architecture in practice. Angus & Robertson;
2003. .

