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Foreword by John Grundy

Architecture vs Agile: competition or
cooperation?

Until recently, conventional wisdom has held that software architecture design and
agile development methods are somehow “incompatible,” or at least they generally
work at cross-purposes [1]. Software architecture design has usually been seen by
many in the agile community as a prime example of the major agile anti-pattern
of “big design up front.” On the other hand, agile methods have been seen by many
of those focusing on the discipline of software architecture as lacking sufficient fore-
thought, rigor, and far too dependent on “emergent” architectures (a suitable one of
which may never actually emerge). In my view, there is both a degree of truth and a
substantial amount of falsehood in these somewhat extreme viewpoints. Hence, the
time seems ripe for a book exploring leading research and practice in an emerging
field of “‘agile software architecture,” and charting a path for incorporating the best of
both worlds in our engineering of complex software systems.

In this foreword, I briefly sketch the background of each approach and the anti-
agile, anti-software architecture viewpoints of both camps, as they seem to have -
become known. 1 deliberately do this in a provocative and all-or-nothing way, mainly
to set the scene for the variety of very sensible, balanced approaches contained in this
book. I hope to seed in the reader’s mind both the traditional motivation of each
approach and how these viewpoints of two either-or, mutually exclusive approaches
to complex software systems engineering came about. I do hope that it is apparent
that I myself believe in the real benefits of both approaches and that they are certainly
in no way incompatible; agile software architecting—or architecting for agile, if you
prefer that viewpoint—is both a viable concept and arguably the way to approach the
current practice of software engineering.

SOFTWARE ARCHITECTURE—THE “TRADITIONAL” VIEW

The concept of “software architecture”—both from a theoretical viewpoint as a
means of capturing key software system structural characteristics [2] and practi

techniques to develop and describe [3, 4]—emerged in the early to mid-1980s)
in response to the growing complexity and diversity of software systems. Praeti-
tioners and researchers knew implicitly that the concept of a “‘software architecture”
existed in all but the most trivial systems. Software architecture incorporated ele-
ments including, but not limited to, human machine interfaces, databases, servers,
networks, machines, a variety of element interconnections, many diverse element
properties, and a variety of further structural and behavioral subdivisions (thread
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management, proxies, synchronization, concurrency, real-time support, replication,
redundancy, security enforcement, etc.). Describing and reasoning about these ele-
ments of a system became increasingly important in order to engineer effective solu-
tions, with special purpose “architecture description languages” and a wide variety of
architecture modeling profiles for the Unified Modeling Language (UML). Software
architecting includes defining an architecture from various perspectives and levels of
abstraction, reasoning about the architecture’s various properties, ensuring the archi-
tecture is realizable by a suitable implementation which will meet system require-
ments, and evolving and integrating complex architectures.

A number of reusable “architecture patterns” [3] have emerged, some addressing
quite detailed concerns (e.g., concurrency management in complex systems), with
others addressing much larger-scale organizational concerns (e.g., multitier architec-
tures). This allowed a body of knowledge around software architecture to emerge,
allowing practitioners to leverage best-practice solutions for common problems
and researchers to study both the qualities of systems in use and to look for improve-
ments in software architectures and architecture engineering processes.

The position of “software architecting” in the software development lifecycle
was (and still is) somewhat more challenging to define. Architecture describes the
solution space of a system and therefore traditionally is thought of as an early part
of the design phase [3, 4]. Much work has gone into developing processes to support
architecting complex systems, modeling architectures, and refining and linking
architectural elements into detailed designs and implementations. Typically, one
would identify and capture requirements, both functional and nonfunctional, and
then attempt to define a software architecture that meets these requirements.

However, as all practitioners know, this is far easier said than done for many real-
world systems. Different architectural solutions themselves come with many
constraints—which requirements can be met and how they can be met, particularly
nonfunctional requirements, are important questions. Over-constrained requirements
may easily describe a system that has no suitable architectural realization. Many soft-
ware applications are in fact “systems of systems” with substantive parts of the appli-
cation already existent and incorporating complex, existent software architecture
that must be incorporated. In addition, architectural decisions heavily influence
requirements, and coevolution of requirements and architecture is becoming a com-
mon approach [5]. Hence, software architectural development as a top-down process
is under considerable question.

AGILE METHODS—THE “TRADITIONAL” VIEW

The focus in the 1980s and 90s on extensive up-front design of complex systems,
development of complex modeling tools and processes, and focus on large invest-
ment in architectural definition (among other software artifacts) were seen by many
to have some severe disadvantages [6]. Some of the major ones identified included
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over-investment in design and wasted investment in over-engineering solutions,
“inability to incorporate poorly defined and/or rapidly changing requirements, inabil-
ity to change architectures and implementations if they proved unsuitable, and lack
of a human focus (both customer and practitioner) in development processes and
methods. In response, a variety of “agile methods” were developed and became
highly popular in the early to mid- 2000s. One of my favorites and one that I think
exemplifies the type is Kent Beck’s eXtreme Programming (XP) [7].

XP is one of many agile methods that attempt to address these problems all the
way from underlying philosophy to pragmatic deployed techniques. Teams comprise
both customers and software practitioners. Generalist roles are favored over special-
ization. Frequent iterations deliver usable software to customers, ensuring rapid
feedback and continuous value delivery. Requirements are sourced from focused
user stories, and a backlog and planning game prioritizes requirements, tolerating
rapid evolution and maximizing value of development effort. Test-driven develop-
ment ensures requirements are made tangible and precise via executable tests. In
each iteration, enough work is done to pass these tests but no more, avoiding
over-engineering. Supporting practices, including 40-hour weeks, pair program-
ming, and customer-on-site avoid developer burnout, support risk mitigation and
shared ownership, and facilitate human-centric knowledge transfer.

A number of agile approaches to the development of a “software architecture”
exist, though most treat architecture as an “emergent” characteristic of systems.
Rather than the harsjﬁly criticized “big design up front” architecting approaches of
other methodologies, spikes and refactoring are used to test potential solutions
and continuously refine architectural elements in a more bottom-up way. Architec-
tural spikes in particular give a mechanism for identifying architectural deficiencies
and experimenting with practical solutions. Refactoring, whether small-scale or
larger-scale, is incorporated into iterations to counter “bad smells,”—which include
architectural-related problems including performance, reliability, maintainability,
portability, and understandability. These are almost always tackled on a need-to
basis, rather than explicitly as an up-front, forward-looking investment (though they
of course may bring such advantages).

SOFTWARE ARCHITECTURE—STRENGTHS AND WEAKNESSES
WITH REGARD TO AGILITY

Up-front software architecting of complex systems has a number of key advantages
[8]. Very complex systems typically have very complex architectures, many compo-
nents of which may be “fixed” as they come from third party systems incorporated
into the new whole. Understanding and validating a challenging set of requirements
may necessitate modeling and reasoning with a variety of architectural solutions,
many of which may be infeasible due to highly constrained requirements. Some
requirements may need to be traded off against others to even make the overall
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system feasible. It has been found in many situations to be much better to do this in
advance of a large code base and complex architectural solution to try and refactor
[8]. It is much easier to scope resourcing and costing of systems when a software
architecture that documents key components exists upfront. This includes costing
nonsoftware components (networks, hardware), as well as necessary third party soft-
ware licenses, configuration, and maintenance.

A major criticism of upfront architecting is the potential for over-engineering and
thus over-investment in capacity that may never be used. In fact, a similar criticism
could be leveled in that it all too often results in an under-scoped architecture and
thus under-investing in required infrastructure, one of the major drivers in the move
to elastic and pay-as-you-go cloud computing [9]. Another major criticism is
the inability to adapt to potentially large requirements changes as customers repri-
oritize their requirements as they gain experience with parts of the delivered system
[6]. Upfront design implies at least some broad requirements—functional and
nonfunctional—that are consistent across the project lifespan. The relationship
between requirements and software architecture has indeed become one of mutual
influence and evolution [5].

AGILE—STRENGTHS AND WEAKNESSES WITH REGARD
TO SOFTWARE ARCHITECTURE -

A big plus of agile methods is their inherent tolerance—and, in fact, encouragement—
of highly iterative, changeable requirements, focusing on delivering working, valuable
software for customers. Almost all impediments to requirements change are removed;
in fact, many agile project-planning methods explicitly encourage reconsideration of
requirements and priorities at each iteration review—the mostly widely known and
practiced being SCRUM [10]. Architectural characteristics of the system can be
explored using spikes and parts found wanting refactored appropriately. Minimizing
architectural changes by focusing on test-driven development—incorporating appro-
priate tests for performance, scaling, and reliability—goes a long way to avoiding
redundant, poorly fitting, and costly over-engineered solutions.

While every system has a software architecture, whether designed-in or emer-
gent, experience has shown that achieving a suitably complex software architecture
for large-scale systems is challenging with agile methods. The divide-and-conquer
approach used by most agile methods works reasonably well for small and some
medium-sized systems with simple architectures. It is much more problematic for
large-scale system architectures and for systems incorporating existent (and possibly
evolving!) software architectures [8]. Test-driven development can be very challeng-
ing when software really needs to exist in order to be able to define and formulate
appropriate tests for nonfunctional requirements. Spikes and refactoring support
small-system agile architecting but struggle to scale to large-scale or even
medium-scale architecture evolution. Some projects even find iteration sequences
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become one whole refactoring exercise after another, in order to try and massively
reengineer a system whose emergent architecture has become(umenable D

BRINGING THE TWO TOGETHER—AGILE ARCHITECTING
OR ARCHITECTING FOR AGILE?

Is there a middle ground? Can agile techniques sensibly incorporate appropriate
levels of software architecture exploration, definition, and reasoning, before exten-
sive code bases using an inappropriate architecture are developed? Can software
architecture definition become more “agile,” deferring some or even most work until
requirements are clarified as develop unfolds? Do some systems best benefit from
some form of big design up front architecting but can then adopt more agile
approaches using this architecture? On the face of it, some of these seem counter-
intuitive and certainly go against the concepts of most agile methods and software
architecture design methods.

However, I think there is much to be gained by leveraging strengths from each
approach to mitigate the discovered weaknesses in the other. Incorporating software
architecture modeling, analysis, and validation in “architectural spikes” does not
seem at all unreasonable. This may include fleshing out user stories that help to sur-
face a variety of nonfunctional requirements. It may include developing a variety of
tests to validate that these requirements are met. If a system incorporates substantive
existing system architecture, exploring interaction with interfaces and whether the
composite system meets requirements by appropriate test-driven development seems
like eminently sensible early-phase, high-priority work. Incorporating software
architecture-related stories as priority measures in planning games and SCRUM-
based project management also seems compatible with both underlying conceptual
models and practical techniques. Emerging toolsets for architecture engineering, par-
ticularly focusing on analyzing nonfunctional properties, would seem to well support
and fit agile practices.

Incorporating agile principles into software architecting processes and tech-
niques also does not seem an impossible task, whether or not the rest of a project
uses agile methods. Iterative refinement of an architecture—including some form
of user stories surfacing architectural requirements, defining tests based on these
requirements, rapid prototyping to exercise these tests, and pair-based architecture
modeling and analysis—could all draw from the demonstrated advantages of agile
approaches. A similar discussion emerges when trying to identify how to leverage
design patterns and agile methods, user-centered design and agile methods, and
model-driven engineering and agile methods [1, 11, 12]. In each area, a number
of research and practice projects are exploring how the benefits of agile methods
might be brought to these more “traditional” approaches to software engineering,
and how agile approaches might incorporate well-known benefits of patterns, User
Centered Design (UCD), and Model Driven Engineering (MDE).
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LOOKING AHEAD

Incorporating at least some rigorous software architecting techniques and tools into
agile approaches appears—to me, at least—to be necessary for successfully engi-
neering many nontrivial systems. Systems made up of architectures from diverse
solutions with very stringent requirements, particularly challenging, nonfunctional
ones, really need careful look-before-you-leap solutions. This is particularly so
when parts of the new system or components under development may adversely
impact existing systems (e.g., introduce security holes, privacy breaches, or
adversely impact performance, reliability, or robustness). Applying a variety of agile
techniques—and the philosophy of agile—to software architecting also seems highly
worthwhile. Ultimately, the purpose of software development is to deliver high-
quality, on-time, and on-budget software to customers, allowing for some sensible
future enhancements. A blend of agile focus on delivery, human-centric support
for customers and developers, incorporating dynamic requirements, and—where
possible—avoiding over-documenting and over-engineering exercises, all seem to
be of benefit to software architecture practice.

This book goes a long way toward realizing these trends of agile architecting and
architecting for agile. Chapters include a focus on refactoring architectures, tailoring
SCRUM to support more agile architecture practices, supporting an approach of
continuous architecture analysis, and conducting architecture design within an agile
process. Complementary chapters include analysis of the emergent architecture con-
cept, driving agile practices by using architecture requirements and practices, and
mitigating architecture problems found in many conventional agile practices.

Three interesting works address other topical areas of software engineering: engi-
neering highly adaptive systems, cloud applications, and security engineering. Each
of these areas has received increasing attention from the research and practice com-
munities. In my view, all could benefit from the balanced application of software
architecture engineering and agile practices described in these chapters.

I do hope that you enjoy this book as much as I enjoyed reading over the contri-
butions. Happy agile software architecting!

John Grundy
Swinburne University of Technology,
Hawthorn, Victoria, Australia
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