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PREFACE

“Model Membrane Systems” is a central theme of Volume 20 of Advances in
Planar Lipid Bilayers and Liposomes (APLBL) which includes eight chapters.
An assortment of subjects 1s covered under this theme such as chemical and
electrostatic interactions of biomolecules (DNA, antimicrobial peptides)
with model biomembranes, structural evolution and phase transitions in
self-assembling systems, and biological significance of self-assembling sys-
tems. Model systems comprise lipid monolayers, Langmuir-Blodgett films,
supported lipid bilayers, vesicles, as well as nonlamellar nanostructures.
Recent advances in these fields are nicely presented by an amalgamation
of theoretical and experimental approaches. The overall content of this vol-
ume 15 thus potentially useful for wide scientific community working on
model lipid systems and their biotechnological implications.

We would like to thank all authors who contributed their chapters to the
Volume 20—Jacek Lipkowski, Natalia Wilke, Sarah Rachel Dennison,
Daniela Uhrikova, Vernita D. Gordon, Tanja Pott, Theyencheri
Narayanan, Marko Marhl, and their coauthors. We would like to thank
all members of the Editorial Board. We also thank our Technical and
Publishing Team of APLBL Volume 20, especially Shellie Bryant, Kate
Newell, and Preeta Kumaraguruparan.

ALES [GLIC AND CHANDRASHEKHAR V. KULKARNI
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Abstract
This chapter reports on recent advances in the application of spectroscopic and surface
imaging technigues to provide molecular level information about the structure of gold-
supported phospholipid bilayers. It describes methods used to deposit biomimetic
membrane at the gold electrode surface. It provides information about the structure
of the membrane deposited at the gold electrode surface and its changes as a function
of the applied potential obtained with the help-of techniques such as scanning electron
microscopy or atomic force microscopy, neutron reflectivity, and infrared reflection
absorption spectroscopy. These experimental approaches provided unique molecular
level information about the interactions of the membrane components with the metal,
orientation, and conformation of molecules within the membrane, water content in the
supported bilayer, and the structure of water molecules within the supported bilayer.
The interactions of the bilayer with the metal restrict mobility of the membrane. From
biomimetic point of view, this is an unwelcomed effect. However, the ability to
Advances in Planar Lipid Bilayers and Liposomes, Volume 20 © 2014 Elsevier Inc. 1
ISSN 1554-4516 All rights reserved.
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2 Jacek Lipkowski

immobilize phospholipid matrix on a conductive support provides unique opportunity
to employ scanning tunneling microscopy to acquire molecular resolution images of
channels formed by antibiotic peptides and in this way to provide direct evidence
and molecular information of their action and their biocidal activity. The metal-
supported model membranes find applications as biosensors. Proteins incorporated
into such membranes constitute the sensing element and act as transducers of chem-
ical to electrical information. This chapter includes a review of IRRAS studies of the
potential induced changes in the orientation and conformation of membrane and
peripheral proteins incorporated into the gold-supported bilayers.

1. INTRODUCTION

Model lipid membranes supported at a metal electrode surface allow
transduction of chemical changes taking place in the membrane to electrical
signal such as current or changes of the membrane capacitance and resis-
tance. The transduction of chemical to electrical information allows devel-
opment of biosensors that find applications for fast drug screening and
selective detection of ions and molecules in general [1,2]. These systems
constitute also ideal platforms for a broad range of biomedical research such
as studies of implant biocompatibility, cell adhesion and fusion, drug screen-
ing, and amyloid plaque formation [3,4].

The supported bilayer lipid membrane (sBLM) is a planar bilayer with
one leaflet physically adsorbed to a solid surface and the other leaflet freely
exposed to solution. The planar geometry and long-term mechanical stabil-
ity of this design allow one to investigate the relationship between the struc-
ture and properties of the bilayer using a wide range of surface sensitive
techniques, such as IR spectroscopy [5-20], scanning tunneling microscopy
(STM) [20-22], atomic force microscopy (AFM) [23,24], Raman spectros-
copy |25] and neutron reflectivity (NR) [26-28].

There are several recent reviews that report on properties of SBLM at
metal surfaces [29-34]. Therefore, the scope of this chapter is to describe
recent advances in the application of spectroscopic and surface imaging tech-
niques to provide molecular level information about the structure of gold-
supported bilayers and on how the structure depends on the potential
applied to the electrode surface. We also discuss how the structure and prop-
erties of SBLM depend on the interaction between the lipid molecules and
the substrate and describe distribution of water molecules within the
supported bilayer. The interactions of the bilayer with the metal restrict
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mobility of the membrane. From biomimetics point of view, this is an
unwelcomed effect. However, the ability to immobilize phospholipid
matrix on a conductive support provides unique opportunity to employ
STM to acquire molecular resolution images of channels formed by antbi-
otic peptides and in this way to provide direct explanation of their biocidal
activity. At metal surface linearly polarized IR photons are interacting with
metal surfaces, the incident and reflected beams enter into destructive inter—
ference when the electric field of the photon is oriented parallel to the sur-
face and into constructive interference when the electric field is located in
the plane of incidence that is normal to the surface. Therefore, by taking a
difference between the two signals one is able to determine the absorption
spectrum of molecules in the supported bilayer. We discuss how to use such
polarization modulation to determine orientation and conformation of mol-
ecules in the supported membrane and how these properties are affected by
the potential drop across the membrane.

2. sBLM PREPARATION METHODS

The most common procedures used to form sBLMs at solid surfaces
are the vesicle fusion (VF) and Langmuir—Blodgett (LB) and Langmuir—
Schaefer (LS) transter methods, which are discussed below.

2.1. Vesicle fusion

Vesicles are closed lipid bilayers that encapsulate an aqueous solution. The
procedure for VF consists of the adhesion and fusion of small unilamellar
vesicles (~50 nm in diameter) at a solid substrate from aqueous vesicle dis-
persion. At hydrophilic surfaces such as glass, quartz, or mica, VF involves
adsorption, deformation, and rupture followed by sliding of a single bilayer
or rolling of two juxtaposed bilayers in a tank tread-type motion on a thin
lubricating film of the solvent. A theory depicting the adhesion, fusion, and
rupture of vesicles at solid surfaces was developed by Lipowsky and Sei-
fert [35]. The validity of this theory was confirmed by Reviakine and
Brisson [36] who with the help of AFM showed images of adsorbed and rap-
tured vesicles at a solid surface. Unilamellar vesicles also fuse at an atomically
smooth surface of gold to form a bilayer [20,21]. STM studies of pure
1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine  (DMPC) and mixed
DMPC—cholesterol vesicles fusion at a Au(111) surface [20] demonstrated
that the mechanism of the bilayer formation at the gold surface is distinctly
different from that on hydrophilic surfaces of glass or quartz. The molecules
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released by rupture of a vesicle initially self-assemble at the metal surface into
a well-ordered monolayer. The self-assembly is controlled by the interaction
between the acyl chain and the metal surface. When more molecules accu-
mulate at the surface, the monolayer is transformed into a hemimicellar state.
In solutions with high vesicle concentrations, the hemimicellar state 1s trans-
formed further into a bilayer. This point is illustrated in Fig. 1.1 which shows
STM images of the Au(111) surface; image (A) 3 min and image (B) 30 min
after addition of vesicles into the solution of an electrochemical STM (EC-
STM) cell. Figure 1.1A shows rows formed by acyl chains of DMPC mol-
ecules lying flat on the surface. However, the images of flat-lying molecules
could be observed only in dilute vesicle solutions and during a short period
of time after the injection of vesicles to the cell. Figure 1.1B shows that after
about 30 min, the film transforms into totally different structure. The nature
of this structure was identified with the help of complementary AFM exper-
iments. Figure 1.2A 1s an AFM image of the gold surface acquired after about
70 min of incubation in a solution of DMPC vesicles. The contrast in this
image shows film with a corrugated surface with the periodicity of the cor-
rugation similar to that in the film imaged in Fig. 1.1B by STM. In the case of

150
N 100

50

0 10.0 200 0 50 100 150
nM

Figure 1.1 (A) STM image of a Au(111) surface acquired 3 min after injection of a solu-
tion of DMPC vesicles showing individual DMPC molecules flat lying on the surface. (B)
The corrugated structure of a film of DMPC molecules at a Au(111) electrode acquired
30 min after injection of vesicles (electrode potential +200 mV vs. Ag/AgCl electrode
saturated with KCl; supporting electrolyte in 50 mM KCIO, with in 0.04 M total DMPC
concentration). Imaging conditions: /;=1.00 nA, E;;, = — 150 mV. Adapted from Ref. [20].
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0.9nm | 0.9 nm
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Figure 1.2 Comparison of AFM images of a Au(111) electrode surface covered by
bilayer formed by vesicle fusion: (A) pure DMPC bilayer in 50 mM NaF solution con-
taining 0.1 mg/mL DMPC vesicles and (B) DMPC-Chol (7:3) DMPC-Chol bilayer in
1 mM NaF solution containing 0.07 mg/mL of DMPC. Images acquired ~70 min after
injection of vesicles to the AFM cell at a temperature of 2041 °C. Adapted from Ref. [24].

AFM, the film can also be characterized by the force—distance curves
recorded in approach of the AFM tip to the film covered surface.

Representative force—distance curves are shown in Fig. 1.3A. Curve 1
displays a characteristic discontinuity when DMPC molecules are present
in the solution. This discontinuity 1s absent in curve 2 when it is recorded
in the pure supporting electrolyte. The discontinuity corresponds to the
penetration of the tip across the film of DMPC molecules and could be used
as a measure of the film thickness. The measured values of the film thickness
are plotted in Fig. 1.3B as a function of temperature. The thickness of the
film formed by fusion of unilamellar vesicles is equal to about 4.5 nm at
20 °C. This corresponds to the expected thickness of DMPC bilayer in
the gel state [37-39]. At temperatures above 24 °C, the thickness decreases
to a value ~3.8 nm which is expected for the liquid-crystalline state [37].
These data indicate that at sufficiently long incubation times, the bilayer
of DMPC is formed at the gold electrode surface by fusion of unilamellar
vesicles.

The temperature dependence of the bilayer thickness shown in Fig. 1.3B
indicates that transition between gel and liquid-crystalline states is observed
between 20 and 22 °C. In DMPC vesicles the phase transition is observed at
24 °C |37]. IR experiments on hybrid bilayers with one leaflet composed of
hydrogen and the second with deuterium-substituted acyl chains indicated
that in the bilayer supported at gold the two leaflets are poorly coupled [10].
This poor coupling explains the observed shift of the phase transition to
lower temperatures.
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Figure 1.3 (A) Force—distance curves recorded at E=0.2 V, curve 1 and solid circles for
0.1 M NaF+0.1 mg/mL DMPC vesicle solution; curve 2 and open squares for pure
supporting electrolyte; (B) Dependence of the thickness of the film of DMPC at the gold
electrode surface as a function of temperature; solid squares: DMPC bilayer formed by a
combination of the Langmuir-Blodgett and Langmuir-Schaefer methods; open
squares: DMPC bilayer formed by a spontaneous fusion of small unilamellar vesicles
from 0.1 M NaF +0.2 mg/mL DMPC vesicle solution; E=0.2 V versus Ag/AgCl electrode
saturated with KCl; (C) Temperature dependence of the bilayer thickness, squares for the
mixed 70% DMPC+30% cholesterol and circles for pure DMPC bilayer formed by the
LB-LS method. Adapted from Ref. [23].

The differences between mechanisms of spreading unillamelar vesicles at
hydrophilic surfaces and at a gold are particularly well illustrated by the
example of spreading mixed DMPC—cholesterol vesicles [21]. When vesi-
cles rapture and their matenal is released onto the surface, strong lipid—metal
interactions are causing segregation of the film into pure cholesterol and
pure DMPC domains seen in the STM image (Fig. 1.4A) recorded
36 min after mjection of vesicles. The zigzag-like features in this contrast
correspond to an ordered domain formed by flat-lying cholesterol



