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Preface

Devolatilization is an industrial process in which low-molecular-weight
components such as unreacted monomer, solvents, water, and various
polymerization by-products are separated from a polymeric system. These
substances, which are often collectively referred to as “volatiles,” may be
removed to comply with various regulations, to improve the polymer’s
properties, or for a variety of other reasons. Devolatilization of a polymer
is a complex process involving the transport of volatiles to a polymer—vapor
interface, the evaporation of the volatiles at the interface, and their sub-
sequent removal by a vacuum system. In addition to simple diffusion of the
volatiles to the polymer—vapor interface, devolatilization progresses in many
cases through a foaming mechanism, in which bubbles containing vapor of
the volatiles to be removed are formed within a polymer melt. To effectively
reduce the concentration of volatile contaminants, a wide variety of devol-
atilizing equipment is used, which may be broadly classifed into nonrotating
and rotating devolatilizers.

To date only two books have been dedicated to the subject of polymer
devolatilization,f the more recent of which was published in 1983. The need
to devolatilize cost-efficiently, together with the increasing number of
restrictions on the acceptable volatile content of polymers, has led to the

t Devolatilization of Plastics (translated from German), VDI-Verlag, Disseldorf,
1980, and Devolatilization of Polymers, J. A. Biesenberger, ed., Hanser, Munich, and
Macmillan, New York, 1983.
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iv Preface

growing attention that devolatilization has received over the past decade.
This attention has resulted in numerous studies conducted by both the
manufacturers and end users of devolatilizing equipment and also by several
research groups at academic institutes. This ongoing research has con-
tributed to a deeper understanding of polymer devolatilization—on both the
fundamental and applied levels—as presented in great detail in this book.

This volume contains 19 chapters. The first four chapters following
the introduction provide the background necessary to understand devol-
atilization. These chapters focus on the thermodynamics of concentrated
polymer solutions, solvent diffusion in polymers, and bubble nucleation
and growth. Chapters 6 and 7 report on two extensive studies that
probe the actual mechanisms by which devolatilization of polymer melts
progresses. The next part of the book addresses devolatilization in various
geometries and types of equipment: after a general overview of devolatilizers,
specific chapters are devoted to the use and analysis of falling-strand,
slit, single-screw, and co-rotating and counter-rotating twin-screw devol-
atilization. The next section (chapters 14-17) demonstrates industrial appli-
cations of devolatilization for a variety of polymers and equipment, and
contains several worked examples. This section is followed by a chapter that
discusses the future of solvents in the polymer industry in view of increasing
regulations. The final chapter in the book addresses the analytical methods
by which the concentrations of residual monomers and other volatiles are
determined.

The first two of the three appendixes feature data on the vapor
pressures of pure solvents and on polymer—solvent interaction parameters,
which are needed for various calculations relating to devolatilization. The
third appendix presents the abstracts of some 60 papers published on
polymer devolatilization over the past decade.

This book targets researchers from both industry and universities who
will benefit from a comprehensive, up-to-date report on polymer devolatiliza-
tion. and designers and end users of devolatilizers who, it is hoped, will find
guidance from some of the leading figures in this field.

In addition to thanking the authors who have participated in writing
this book, I would like to acknowledge the following people for assisting in
various ways in the preparation of this volume: Ted Allen, Paul Andersen,
Yachin Cohen, Anca Dagan, Tom Daubert, Philip DeLassus, Garry Leal,
Ken Powell. Valeri Privalko, Chris Rauwendaal, Tadamoto Sakai, Judith
Schmidt, Bertha Shdemati, and Nam Suh.

My special thanks are extended to Professors Zehev Tadmor and Ishi
Talmon, to whom I am indebted for introducing me to the study of polymer
devolatilization.

Ramon J. Albalak
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An Introduction to Devolatilization

Ramon J. Albalak

Massachusetts Institute of Technology, Cambridge, Massachusetts
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I. INTRODUCTION

Most polymers leaving the reactor contain some low-molecular-weight
components such as unreacted monomer, solvents, water, and various
reaction by-products. These substances are often collectively referred to as
volatiles and their presence in the polymer is usually undesired. The
concentrations at which these volatiles are present may be as low as several
ppm or as high as several tens of percent. Separating them from the bulk
polymer may be performed for several reasons, such as
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To improve the properties of the polymer

To recover monomer/solvent

To fulfill health and environmental regulations
To eliminate odors

To increase the extent of polymerization

The procedure by which volatiles are separated from the bulk polymer
is called devolatilization and is usually performed with the polymer above
its glass transition temperature, or above the melting temperature for
crystalline polymers. This process has been recognized as a unit operation
of polymer processing (Tadmor and Gogos, 1979), and it is carried out in
industry in a large variety of equipment, covered in great detail in other
chapters. Biesenberger and Sebastian (1983) have classified this equipment
into two main categories: rotating devolatilizers (such as vented extruders)
and still, or nonrotating, devolatilizers (such as falling-strand devolatilizers).

The need to devolatilize on a cost-efficient basis together with the
increasing number of restrictions on the acceptable volatile content of
polymers has led to the growing attention that devolatilization has received
over the past decade. This attention has resulted in numerous studies
conducted by both the manufacturers and end users of devolatilizing
equipment and also by several research groups at academic institutes. The
abstracts of many of these studies are presented in Appendix C.

Il. THEORETICAL BACKGROUND

Devolatilization of a polymer is a complex process generally involving the
transport of volatiles to a polymer—vapor interface, the evaporation of the
volatiles at the interface, and their subsequent removal by a vacuum system.
In addition to simple diffusion of the volatiles to the polymer—vapor
interface, devolatilization progresses in many cases through a foaming
mechanism, in which bubbles containing the volatiles to be removed are
formed within the polymer melt. These bubbles may then grow, coalesce,
and finally rupture at the polymer—vapor interface, where they release their
volatile contents to the vapor phase.

The progress of the devolatilization process depends both on the
thermodynamic potential for separation and on the means by which that
potential may be realized. Among other factors that determine the extent
and rate of devolatilization are the thermodynamics of the polymer—volatile
system, the nature of the diffusion of the volatile through the polymer, and
the nucleation and growth of vapor bubbles in the polymer melt. The
importance of these issues to devolatilization will be presented here briefly,
since they are dealt with in depth in the next four chapters.
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One of the basic parameters of interest in any separation process is the
maximum degree of separation that may be obtained for a given system. The
equilibrium weight fraction, W,, for a given polymer—volatile system may be
related to the partial pressure of the volatile in the vapor phase, P;, by
Henry’s law:

P

W o=_-L
c=Z (1)

w

The Henry's law constant, K,,, depends on the temperature, the pressure,
and the volatile in question.

The behavior of polymer—volatile solutions can be described using the
Flory—Huggins theory, discussed in Chapter 2. For high-molecular-weight
polymers containing low concentrations of volatile material, the following
simplified relation may be written:

lni=ln¢1+1+x (2)
PY
where PY is the vapor pressure of the pure volatile, ¢, is the volume fraction
of the volatile, and y is the Flory—Huggins interaction parameter. Correla-
tions and graphs of P9 as a function of temperature for 50 solvents and
monomers of interest are given in Appendix A. Values of y for several
polymer—volatile systems are given in Appendix B.

Biesenberger and Sebastian (1983) used an approximate relation
between volume and weight fractions of the volatile material to evaluate the
Henry’s law constant as

K, = P 2 exp(l + ) 3)
P1

in which p, and p, are the densities of the volatile and polymer, respectively.

The foregoing equations enable one to calculate the weight fraction of
the volatile at equilibrium. However, in real devolatilization processes lasting
a finite period of time, equilibrium is never actually reached, and the final
volatile concentration obtained will be greater than W..

The time it takes for a certain degree of separation to be achieved in
a given polymer—volatile system strongly depends on the rate at which the
volatile is able to migrate through the polymer. This is true for both the
migration of volatiles directly to the surface, where they are removed by the
vacuum system, and for the migration of volatiles to bubble nucleation sites
and to vapor bubbles that grow within the polymer melt. The diffusion in
concentrated polymer solutions is a very slow process, with typical diffusion
coefficients in the range 107 8-107'? m?/sec (several orders of magnitude
smaller than the diffusion coefficients in low-molecular-weight liquids). The
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diffusion coefficient depends strongly on the temperature of the system and
on the concentration of the volatile component. This dependence is especially
strong in the vicinity of the glass transition temperature of the polymer, and
it may be predicted according to the work of Duda, Vrentas, and their
coworkers (Duda et al., 1978, 1982; Vrentas and Duda, 1979) based on a
free-volume model (see Chapter 3). The increase in free volume at elevated
temperatures results in an increase in diffusivity and a decrease in melt
viscosity—both beneficial for devolatilization. An additional reason for
devolatilizing at high temperatures is the increase in the vapor pressure of
the volatile component, PS.

The strong decrease in diffusivity as the concentration of the volatile
component approaches zero may be partially overcome by the addition of
an inert substance (usually water) that reduces the weight fraction of the
polymer in the system (Ravindranath and Mashelkar, 1988). The efficiency
of small amounts of water as a stripping agent in polymer devolatilization
has been demonstrated by Werner (1980) and more recently by Mack and
Pfeiffer (1993). Other advantages of adding an inert substance were noted
by Biesenberger and Sebastian (1983): (1) The addition of an inert substance
to the system reduces the partial pressure of the volatile component, P, and
thus (Eq. 1) reduces its weight fraction at equilibrium; (2) The combined
vapor pressures of both the inert substance and the volatile component
reduce the temperature and volatile concentration needed to bring about
boiling of the polymer solution; (3) Boiling of the inert substance creates
bubbles that increase the area available for mass transfer from the polymer
to the vapor phase.

Bubbles do not necessarily originate from the presence of an additional
inert component. They may be generated by boiling of the volatile alone
under superheated conditions at which the partial pressure of the volatile is
greater than the surrounding pressure. In general, bubble nucleation may be
either homogeneous or heterogeneous. Blander and Katz (1975) have
presented expressions for the rate of homogeneous nucleation that occurs
within the bulk of a liquid, and for the rate of heterogeneous nucleation that
takes place on a surface in contract with the liquid. The general form of
these expressions is

J=AexpB (4)

in which J is the nucleation rate, and A and B are factors that incorporate
system parameters such as temperature, surface tension, and the degree of
superheat.

Tadmor (1985) applied Eq. (4) to a polystyrene—styrene system
and showed that substantial homogeneous nucleation may occur only at
temperatures much higher than those at which devolatilization 1s performed.



