

David B. Johnson

Diablo Valley College

Thomas A. Mowry

Diablo Valley College

BROOKS/COLE PUBLISHING COMPANY

Pacific Grove • Albany • Belmont • Bonn • Boston • Cincinnati• Detroit • Johannesburg London • Madrid • Melbourne • Mexico City • New York • Paris • Singapore Tokvo • Toronto • Washington

Sponsoring Editor: Margot Hanis Interior Design: John Edeen

Signing Representative: Dwayne Coy Interior Illustration: Dartmouth Publishing, Inc.

Marketing Manager: Caroline Croley
Editorial Assistants: Kimberly Raburn,
Cover Design: Roy R. Neuhaus
Cover Illustration: Amy L. Wasserman

Jennifer Wilkinson, Melissa Duge Art Editor: Lisa Torri

Advertising Communications: Christine Davis
Production Editor: Kirk Bomont
Manuscript Editor: Barbara Kimmel

Photo Editors: Kathleen Olson, Terry Powell
Typesetting: Carlisle Communications, Ltd.
Printing and Binding: R. R. Donnelley

Permissions Editor: Sue C. Howard and Sons, Inc.

COPYRIGHT © 1999 by Brooks/Cole Publishing Company

A division of International Thomson Publishing Inc.

I(T)P The ITP logo is a registered trademark under license.

For more information, contact:

BROOKS/COLE PUBLISHING COMPANY International Thomson Editores

511 Forest Lodge Road Seneca 53 Pacific Grove, CA 93950 Col. Polanco

USA

International Thomson Publishing Europe International Thomson Publishing GmbH

Berkshire House 168-173 Königswinterer Strasse 418

High Holborn 53227 Bonn London WC1V 7AA Germany

England International Thomson Publishing Asia

11560 México, D. F., México

Thomas Nelson Australia 60 Albert Street
102 Dodds Street #15-10 Albert Complex
South Melbourne, 3205 Singapore 189969

Victoria, Australia International Thomson Publishing Japan Nelson Canada Hirakawacho Kyowa Building, 3F

1120 Birchmount Road 2-2-1 Hirakawacho Scarborough, Ontario Chiyoda-ku, Tokyo 102

Canada M1K 5G4 Japan

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of the publisher, Brooks/Cole Publishing Company, Pacific Grove, California 93950.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Johnson, David B. (David Bruce), [date]

Finite mathematics: practical applications / David B. Johnson,

Thomas A. Mowry.

p. cm.

Includes bibliographical references (p. -) and index.

ISBN 0-534-94782-4 (alk. paper)

1. Mathematics. I. Mowry, Thomas A. II. Title.

QA39.2.J59 1999

510-dc21

PREFACE

Typically, a student takes a finite mathematics course to satisfy either a major or graduation requirement. Thus, the course can be populated with students ranging from business majors to biology majors to liberal arts majors. The goal of *Finite Mathematics: Practical Applications* is to familiarize students with the mathematics used in their major fields of study and to expose liberal arts students to topics in mathematics that are usable and relevant to any educated person. It is our hope that each student will encounter several topics that will prove useful over the course of his or her life. In addition, we hope that students will see that mathematics is relevant to their education and that there is a human aspect to mathematics.

Tour of the Book

Ease of Use

This book is user-friendly. The examples don't skip steps; key points are boxed for emphasis; step-by-step procedures are given; and there is an abundance of explanation. The Instructor's Manual includes a "prerequisite map" so that the instructor can easily tell which earlier topics must be covered.

Course Prerequisite

Finite Mathematics: Practical Applications is written for the student who has successfully completed a course in algebra. A background in beginning algebra may be sufficient; however, the authors have found that the student who has a background in intermediate algebra is significantly better prepared for the course.

Algebra Review

Where appropriate, algebraic topics are reviewed, but in a very selective and focused manner. Only those topics that are used in the book are covered. There is no "Review of Algebra" chapter; instead, the reviews are placed as close as possible to the topics that utilize them, usually in a Section 0 at the beginning of the chapter. These sections are direct and to the point. They do not attempt to provide a thorough treatment of the algebra in question but rather focus on the algebra that will be used in the sections that follow. Typically, they do not cover applications of the algebra, which are covered in the following sections.

Algebra courses vary significantly from school to school. Among the Section 0 topics are some that students may not have seen before, such as matrix arithmetic and the elimination method. In these cases, the reviews are more detailed and assume less prior knowledge.

Technology

Calculators and computers are useful and powerful tools that have become an integral part of the classroom and workplace. However, many students are unable to use their calculators effectively and have no mathematical experience using computers. Therefore, instructions for graphing calculator, scientific calculator, and computer use are included.

Detailed instructions for both scientific and graphing calculator use are given in calculator boxes throughout the text:

Scientific calculator instructions are identified with this scientific calculator icon.

Graphing calculator instructions are identified with this graphing calculator icon.

Furthermore, a number of optional technology subsections address some of the more advanced capabilities of graphing calculators and computers. These subsections allow instructors to incorporate technology into their classes if and when they desire, but they are entirely optional, and the text is in no way technology dependent. The subsections, identified with italics in the table of contents, are clearly identified in the text with an icon at the beginning of the subsection, and with a colored bar at the edge of the page as in this portion of the preface. The subsections are always preceded by technology-free discussion and exercises.

The technology subsections that focus on graphing calculators were specifically written for Texas Instruments models TI-82, TI-83, TI-85, and TI-86; however, they frequently apply to other brands as well. They are identified by the graphing calculator icon. See the table of contents for a complete listing.

The text also features Amortrix, a computer software supplement written specifically to accompany this text. It is available for Macintosh and Windows-based computers; it is also accessible on the World Wide Web (see Ancillaries section, below). The software shows students the value of using a computer in computationally intensive areas, without relieving the student of decision-making responsibilities. Amortrix has two capabilities:

- It will execute specific matrix row operations. After inputting a matrix, the student can instruct the computer to multiply row 2 by 3, and add the result to row 1. However, Amortrix will not "take over" and do a problem for the student—the student must decide where and how to pivot, and the computer will perform only the calculations.
- It will create an amortization schedule. However, Amortrix will not compute the last line correctly; instead, it uses the same algorithm on all lines of the schedule, forcing the student to correct the last line so that there is a zero balance.

The use of Amortrix is addressed in optional technology subsections in Chapter 2 (Systems of Linear Equations and Inequalities), Chapter 3 (Linear Programming: The Simplex Method), and Chapter 10 (Finance). The software is not an integral part of this book; the topics can be covered quite reasonably without any computer use.

Finally, an optional technology subsection gives instructions on the use of computerized spreadsheets (such as Microsoft Excel and Lotus 1-2-3) in creating amortization schedules.

Subsections that make use of the Amortrix software or spreadsheets are identified by a computer icon. Some technology subsections provide support for both graphing calculators and software, and are identified by both icons.

History

The history of the subject matter is interwoven throughout most chapters. In addition, Historical Notes give in-depth biographies of the prominent people involved. It is our hope that students will see that there is a human aspect to mathematics. After all, mathematics was invented by real people for real purposes and is a part of our culture. Interesting research topics are given, and writing assignments are suggested. Short-answer historical questions are also included; they are intended to focus and reinforce the students' understanding of the historical material. They also serve to warn students that history questions may appear on exams.

Exercises

The exercises vary in difficulty. Some are exactly like the examples, and others expect more of the students. The exercises are not explicitly graded into A, B, and C categories, nor are any marked "optional" (students in this audience tend to react negatively if asked to do anything labeled in this manner). The more difficult exercises are indicated in the Instructor's Resource Manual.

Applications are stressed, and the student is usually given real or realistic data. Furthermore, the student is usually given information at a realistic level. For example, in Chapter 1 on Linear Equations, the student is not given cost and revenue functions, since it is not realistic to assume that this level of information would be available. Instead, he or she is given data and is asked to compute the cost and revenue functions, as well as the break-even point.

Critical thinking is also stressed. For example, the student is frequently asked to interpret a quantitative answer, give advice based on a quantitative answer, discuss assumptions, or make a prediction. Writing exercises are common, as are exercises that could be used in a group situation. Essay questions are also common; they can be used as an integral part of the students' grades, as a background for classroom discussion, or as extra credit work. Many are research topics and are kept as open-ended as possible.

Throughout the text, there is emphasis on the importance of checking one's answers. Thus, students learn to evaluate the reasonableness of their answers rather than accepting them at face value.

Answers

Answers to the odd-numbered exercises are given in the back of the book, with two exceptions:

- Answers to historical questions, interpretive questions, essay questions, and other open-ended questions are not given.
- Answers are not given when the exercises instruct the students to check the answers themselves.

The Students' Solutions Manual contains solutions to every other odd exercise. Thus, the instructor has access to four different types of exercises:

 Exercises that have an answer in the back of the book and a solution in the Student Solutions Manual.

- Exercises that have an answer in the back of the book but no solution in the Student Solutions Manual.
- Exercises that have neither an answer in the back of the book nor a solution in the Student Solutions Manual.
- Exercises that require the student to check his or her answer.

ANCILLARIES

Instructor's Resource Manual (ISBN 0-534-93407-2), by David Johnson, Thomas Mowry, and Michael Rosenborg, contains answers to all even-numbered exercises, chapter summaries, and suggestions for teaching from the text.

Student Solutions Manual (ISBN 0-534-93408-0) provides the solutions to every other odd-numbered text exercise.

Student Tutorial CD (ISBN 0-534-36425-X) provides the student with tutorial items and practice problems.

Amortrix (Macintosh ISBN 0-534-35597-8; Windows 95/NT ISBN 0-534-35699-0; Windows 3.x ISBN 0-534-35695-8; Java http://www.brookscole.com/math/amortrix/) This software accompanies Chapter 2 (Systems of Linear Equations and Inequalities), Chapter 3 (Linear Programming: The Simplex Method), and Chapter 4 (Matrix Equations). The software executes matrix row operations and creates amortization schedules. It shows students the value of using a computer in computationally intensive areas. It will run on a network, independent computer, or over the Web, and is free to adopters of the text.

Printed Test Items (ISBN 0-534-35849-7) contains printed test forms, with answers, for instructors.

Thomson World Class Testing Tools (Macintosh ISBN 0-534-35859-4 and 0-534-36284-2; Windows ISBN 0-534-35848-9 and 0-534-36285-0) This fully-integrated suite of test creation, delivery, and classroom management tools includes World Class Test, Test Online, and World Class Management software. World Class Testing Tools allows professors to deliver tests via print, floppy, hard drive, LAN, or Internet. With these tools, professors can create cross-platform exam files from publisher files or existing WESTest 3.2 test banks, create and edit questions, and provide their own feedback to objective test questions—enabling the system to work as a tutorial or an examination. In addition, professors can generate questions algorithmically, creating tests that include multiple-choice, true/false, and matching questions. Professors can also track the progress of an entire class or an individual student. Testing and tutorial results can be integrated into the class management tool, which offers scoring, gradebook, and reporting capabilities.

Acknowledgments

Special thanks go to the reviewers who evaluated the manuscript:

Alfred Bachman Cal Poly State University Gary G. Bard Taylor University

Ronald Barnes University of Houston, Downtown Carol A. Barnett St. Louis Community College at Meramec Barbara Beaudin University of Hartford Barbara A. Becker

St. Xavier University

W. E. Bonnice

University of New Hampshire

Chris Braun

Coconino County Community College

Eleanor Canter

Wentworth Institute of Technology

Frederick J. Carter St. Mary's University

Jerry Davis

Johnson State College

Joseph W. Fidler Triton College Bennette Harris

University of Wisconsin-Whitewater

Marian Harty

Edgewood College

Yvette Hester

Texas A&M University

Vern H. Klotz Concordia University

Cen-Tsong Lin

Central Washington University

Lewis Lum

University of Portland

Thomas Ralley

Portland State University

Jane M. Rood

Eastern Illinois University

Arthur Rosenthal

Salem State College

Janet S. Schachtner

San Jacinto College North

Dan Schapiro

Yakima Valley Community College

Linda Schultz

McHenry County College

Ghulam M. Shah

University of Wisconsin-Waukesha

Mary Jane Sterling Bradley University

We wish to thank our wives for their patience and support. We are also grateful to Margot Hanis, Bob Pirtle, Melissa Duge, Kirk Bomont, Roy Neuhaus, and all the wonderful people at Brooks/Cole who worked on this project, as well as Deann Christianson, Sarah Merz, Mike Rosenborg, and Amy Wasserman.

DAVID JOHNSON THOMAS MOWRY

CONTENTS

1	Best Fit or Good Fit? 52 The Correlation Coefficient 53
LINEAR EQUATIONS 1	Exercises 55 Regression on a Graphing Calculator 56
1.0 Lines and Their Equations 2 Cartesian Coordinates 2 Slope 3 Finding the Equation of a Line 6 The Slope-Intercept Formula 7 Historical Note: The Inventors of Analytic Geometry 8 Graphing a Line from Its Equation 8 Exercises 10 Graphing Lines on a Graphing Calculator 13 Calculator Exercises 16	Calculator Exercises 59 CHAPTER 1 REVIEW 60 Systems of Linear Equation and Inequalities 63
1.1 Functions 17 The Vertical Line Test 20 Why Must the Outputs Be Unique? 20 Independent and Dependent Variables 21 Domain and Range 21 Evaluating Functions 23 Exercises 24 Functions on a Graphing Calculator 28	2.0 The Elimination Method 64 Linear Equations 64 Systems of Equations and Their Solutions 64 Solving Systems: The Elimination Method 66 Exercises 69 Graphing Systems of Equations on a Graphing Calculator 70 Calculator Exercises 70
Calculator Exercises 30 1.2 Linear Models in Business and Economics 31 Cost Functions 31 Marginality 33 Revenue Functions 34 Break-Even Analysis 35	 2.1 Introduction to Matrices and the Gauss-Jordan Method 71 Matrix Terminology 71 Solving Systems: The Gauss-Jordan Method 72 Exercises 78 Technology and the Row Operations 79 Technology Exercises 86
Demand 37 Supply 38 The Theory of Supply and Demand 39 Depreciation 41 Exercises 42	2.2 More on the Gauss-Jordan Method 86 Applications 86 Systems with No Solutions 88 Systems with More Than One Solution 88 Exercises 89
Linear Models on a Graphing Calculator 45 Calculator Exercises 47 1.3 Linear Regression 48 Line of Best Fit 50	2.3 Linear Inequalities 91 Systems of Linear Inequalities 94 Finding Corner Points 96 Exercises 98

Graphing Linear Ineq	ualities on a Graphing
Calculator 99	
Calculator Exercises	103

2.4 The Geometry of Linear Programming 103 Historical Note: George Dantzig 104 Creating a Model 105 Analyzing the Model 107 Why the Corner Principle Works 110 Exercises 116 CHAPTER 2 REVIEW 119

LINEAR PROGRAMMING 121

- 3.1 Introduction to the Simplex Method 123 Comparison of the Gauss-Jordan and Simplex Methods 127 Karmarkar's New Method 128 Exercises 129
- 3.2 The Simplex Method: Complete Problems 131 Pivoting with the Simplex Method 132 When to Stop Pivoting 133 Why the Simplex Method Works 135 Exercises 141 *Technology and the Simplex Method* 143 Technology Exercises 146
- 3.3 Mixed Constraints and Minimization 148 Mixed Constraints 148 Mixed Constraints: Pivoting 149 Minimization 151 Exercises 157 Technology and Transportation Problems 158 Technology Exercises 159
- 3.4 Shadow Values 160 Exercises 163
- 3.5 Duality 164 The Primal Problem 165 The Dual Problem 165 Interpreting the Dual's Solution 167 The Dual's Final Simplex Matrix Compared with the Primal's Final Simplex Matrix The Method of Duals 169

Exercises 174 CHAPTER 3 REVIEW 176

MATRIX EQUATIONS

4.0 Matrix Arithmetic 179 Addition and Subtraction of Matrices 179 Scalar Multiplication 180 Matrix Equations 180 Matrix Multiplication 181 Properties of Matrix Multiplication 185 Identity Matrices 187 Historical Note: Arthur Cayley & James Joseph Sylvester 188 Exercises 188 Matrix Arithmetic on a Graphing Calculator 192 Calculator Exercises 194

- 4.1 Inverse Matrices 195 Using Inverses to Solve Matrix Equations 196 Finding the Inverse of a 2×2 Matrix 197 Using a Matrix Equation to Solve a System of Equations 199 Why Solve Systems with Matrix Equations? 201 Cryptography 203 Exercises 203 Inverses on a Graphing Calculator 205 Calculator Exercises 206
- 4.2 The Gauss-Jordon Method and Inverses 206 Exercises 209
- 4.3 Leontief Input-Output Models 210 Robinson Crusoe—A Fractured Fairy Tale 210 Historical Note: Wassily Leontief 215 Exercises 216 CHAPTER 4 REVIEW 217

SETS AND COUNTING 219

5.1 Sets and Set Operations 220 Notation 220 Universal Set and Subsets 222

Intersection of Sets 222

**Historical Note: John Venn 223

Mutually Exclusive Sets 224

Union of Sets 224

Complement of a Set 226

Exercises 227

- 5.2 Applications of Venn Diagrams 230
 Surveys 230
 De Morgan's Laws 234
 Historical Note: Augustus De Morgan 236
 Exercises 236
- 5.3 Introduction to Combinatorics 240
 The Fundamental Principle of Counting 240
 Factorials 244
 Calculators and Factorials 245
 Exercises 247
- 5.4 Permutations and Combinations 249
 With versus Without Replacement 249
 Permutations 249
 Combinations 252
 Historical Note: Chu Shih-chieh 259
 Exercises 260
 CHAPTER 5 REVIEW 262

6

PROBABILITY 264

- 6.1 Introduction to Probability 265

 Basic Terms of Probability 265

 Finding Probabilities and Odds 266

 Relative Frequency versus Probability 269

 Exercises 270
- 6.2 Probability Distributions 272

 **Historical Note:* Gregor Johann Mendel 274

 Mendel's Use of Probabilities 274

 Probabilities in Genetics 277

 Genetic Screening 279

 **Historical Note:* Nancy Wexler 280

 Exercises 281
- 6.3 Basic Rules of Probability 283

 Mutually Exclusive Events 283

 Pair of Dice Probabilities 284

 More Probability Rules 286

Probabilities and Venn Diagrams 287
Exercises 288
Fractions on a Graphing Calculator 290
Calculator Exercises 291

- 6.4 Combinatorics and Probability 292

 **Historical Note: Lotteries and Keno 296

 Exercises 298
- 6.5 Probability Distributions and Expected Value 300 Why the House Wins 302 Decision Theory 302 Exercises 303
- 6.6 Conditional Probability 305
 Probabilities and Polls 305
 The Product Rule 309
 Tree Diagrams 310
 Exercises 314
- 6.7 Independence 318
 Dependent and Independent Events 318
 Product Rule for Independent Events 321
 Exercises 322
- 6.8 Bayes' Theorem 324
 Trees in Medicine 324
 Exercises 328
 CHAPTER 6 REVIEW 330

7

MARKOV CHAINS 332

- 7.1 Introduction to Markov Chains 333
 Transition Matrices 335
 Probability Matrices 336
 Historical Note: Andrei Andreevich Markov 342
 Exercises 343
- **7.2 Regular Markov Chains** 346 Exercises 352
- 7.3 Absorbing Markov Chains 355
 Regular Chains versus Absorbing Chains 355
 Long-Range Predictions with Absorbing Chains 357
 Finding the Probability of Being Absorbed 360
 Exercises 362
 www.erto/CHAPTER 7 REVIEW 364

8

GAME THEORY 366

- 8.1 Introduction to Game Theory
 Reward Matrices 367
 Pure Strategies 368
 Strictly Determined Games 370
 Two-Person Constant-Sum Games 371
 Games That Are Not Strictly Determined
 Historical Note: John von Neumann 373
 Exercises 373
- 8.2 Mixed Strategies 375
 Randomized Strategies 376
 Randomized Strategies versus Pure Strategies 377
 Probability Matrices and Expected Value 378
 Optimal Randomized Strategies: The Geometric Method 380
 Randomized Strategies versus Randomized Strategies 382
 Removing Dominated Strategies 385
 Exercises 388
- 8.3 Game Theory and Linear Programming 390Exercises 397CHAPTER 8 REVIEW 399

9

STATISTICS 400

- 9.1 Frequency Distributions 401
 Grouped Data 402
 Histograms 404
 Relative Frequency Density 404
 Exercises 408
 Histograms on a Graphing Calculator 411
 Calculator Exercises 415
- 9.2 Measures of Central Tendency 415
 Population versus Sample 415
 The Mean 416
 The Median 420
 The Mode 422
 Exercises 423
- 9.3 Measures of Dispersion 426

- Deviations 427
 Variance and Standard Deviation 428
 Alternate Methods for Finding Variance 430
 Exercises 435
 Measures of Central Tendency and Dispersion on a
 Graphing Calculator 438
 Calculator Exercises 440
- 9.4 The Normal Distribution 440
 **Historical Note: Carl Friedrich Gauss 442
 The Standard Normal Distribution 444
 Converting a Normal Distribution to the Standard Normal Distribution 450
 Exercises 452
- 9.5 Binomial Experiments 454
 Binomial Probabilities 454
 Binomial Distributions and Expected Value 458
 Exercises 460
 Binomial Probabilities on a Graphing
 Calculator 462
 Calculator Exercises 463
- 9.6 The Normal Approximation to the Binomial Distribution 463
 Binomial Distributions and Histograms 463
 The Normal Approximation to the Binomial Distribution 464
 Exercises 467
 CHAPTER 9 REVIEW 468

10

FINANCE 471

- 10.1 Simple Interest 472
 Add-on Interest 475
 Simple Discount Loans 476
 Discounting a Note 478
 Exercises 479
- 10.2 Compound Interest 481
 Annual Yield 486
 Exercises 490
 Doubling Time on a Graphing Calculator 492
 Calculator Exercises 495
- **10.3 Annuities** 495 Calculating Short-Term Annuities 496

Calculating Long-Term Annuities 499
Tax-Deferred Annuities 501
Sinking Funds 502
Present Value of an Annuity 503
Exercises 505
Annuities on a Graphing Calculator 508
Calculator Exercises 508

10.4 Amortized Loans 508
Amortization Schedules 510
Finding an Unpaid Balance 515
Exercises 517
Amortization Schedules on a Computer 522
Computer Exercises 528

10.5 Annual Percentage Rate on a Graphing Calculator 528
 Historical Note: Truth in Lending Act 530
 Finance Charges 531
 Exercises 535
 CHAPTER 10 REVIEW 536

APPENDICES

I Using a Graphing Calculator A-1
The Enter Button A-1
The 2nd and Alpha Buttons A-1
Correcting Typing Errors A-2
The Subtraction Symbol and the Negative
Symbol A-2
The Multiplication Button A-3
Order of Operations and Use of Parentheses A-3
Memory A-6
Scientific Notation A-9
Exercises A-10
Il Body Table for the Standard Normal
Distribution A-12
III Answers to Selected Exercises A-13

Credits A-52 Index A-53

LINEAR EQUATIONS

You have studied three different branches of mathematics: arithmetic, algebra, and geometry. Algebra involves equations and inequalities, while geometry involves shapes and graphs.

Analytic geometry is a bridge between algebra and geometry. It emphasizes a correspondence between equations and graphs; every equation has a graph, and most graphs have equations. This correspondence is a fruitful one; it allows algebra problems to be attacked with the tools of geometry in addition to the tools of algebra.

Business analysts and economists use a great deal of analytic geometry in their fields.

In this chapter we will investigate some of the mathematics used in business and economics. In particular, we will investigate the Central State University's Business Club and its attempt to make money selling T-shirts at football games. This enterprise involves the careful determination of the quantity of shirts to order as well as of the shirts' sales price. Ordering too many shirts or charging too much would result in the club's buying shirts they can't sell, and ordering too few or charging too little would result in not having enough to sell; in either event, the club would lose revenue.

1.0 LINES AND THEIR EQUATIONS

1.1 Functions

1.2 LINEAR MODELS IN BUSINESS AND ECONOMICS

1.3 LINEAR REGRESSION

1.0

LINES AND THEIR EQUATIONS

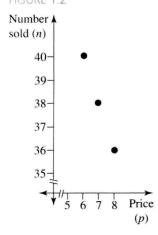
Cartesian Coordinates

Stuart sells sunglasses from a stand at Venice Beach. After experimenting with prices, he discovered (not surprisingly) that the more he charges, the less he sells. For several days Stuart charged \$6 per pair. He kept records on the number of pairs sold and found that he sold an average of 40 pairs per day at that price. This and similar data are given in Figure 1.1.

FIGURE 1.1

Price	Number sold
\$6	40
\$7	38
\$8	36

FIGURE 1.2



Stuart's data can be illustrated graphically by drawing two perpendicular number lines, where the horizontal number line represents price and the vertical number line represents number sold, as shown in Figure 1.2. Notice that both number lines have breaks; the price is always above 5, and the number sold is always above 35.

The upper-left point in Figure 1.2 is directly above 6 on the horizontal number line, so it corresponds to a price of \$6. It is also directly across from 40 on the vertical number line, so it corresponds to 40 pairs sold. If we let p refer to price and n refer to number sold, the upper-left point could be labeled p = 6, n = 40. A more traditional way of labeling this point is to write (p, n) = (6, 40). This is called an **ordered pair**, because it is a pair of numbers written in a certain order. The order is important; if we write (40, 6), we get the incorrect statement that at a price of \$40, 6 pairs are sold.

The number 6 is called the **p-coordinate** of the ordered pair, and the number 40 is called the **n-coordinate**. The system of graphing is called **Cartesian coordinates**, in honor of René Descartes, a mathematician and philosopher. (Oddly, while Descartes explored the relationship between algebra and geometry, he neither invented nor utilized the system that bears his name.)

There are two different traditions of the use of letters in this type of situation:

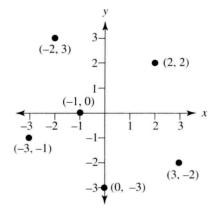
- Use x and y
- Use letters that refer to the quantity being measured, as p refers to price and n refers to number sold above

Descartes started the former tradition; he used letters from the end of the alphabet to represent variables. This tradition is usually adhered to in algebra classes. However, in an application like this one, the latter tradition can serve as a valuable memory aid.

When the "x and y" tradition is followed, we have x-coordinates and y-coordinates rather than p-coordinates and n-coordinates. The horizontal axis is called the x-axis, and the vertical axis is called the y-axis. In the above discussion, we used p and nrather than x and y, respectively, so the horizontal axis is the p-axis, and the vertical axis is the *n*-axis. The two axes meet where both p and n are 0; this point, (0, 0), is called the origin.

In Figure 1.3, we show x- and y-axes that include both positive and negative values (the negative values are on the left end of the x-axis and on the lower end of the y-axis). The upper-left point corresponds to the ordered pair (x, y) = (-2, 3), since it is above -2on the x-axis and across from 3 on the y-axis.

FIGURE 1.3



Slope

A line's steepness is measured by its slope. Slope (usually denoted by the letter m) is the ratio of the **rise** (the change in y) to the **run** (the change in x):

slope =
$$m = \frac{\text{rise}}{\text{run}} = \frac{\text{change in } y}{\text{change in } x}$$

EXAMPLE 1

- a. Calculate the slope of the line between the ordered pairs (p, n) = (6, 40) and (p, n) = (7, 38)from Stuart's sales data.
- b. Calculate the slope of the line between the ordered pairs (p, n) = (7, 38) and (p, n) = (8, 36)from Stuart's sales data.
- c. Determine what these slopes measure in the context of the problem.
- d. Use the slope to predict the number of sunglasses that will sell at \$9. What is this prediction based on?

Solution Here our ordered pairs are (p, n), rather than (x, y). Thus,

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{\text{change in } n}{\text{change in } p}$$

a. In moving from the point (p, n) = (6, 40) to the point (p, n) = (7, 38), p increases from 6 to 7, so p changes by 7 - 6 = 1. Similarly, n decreases from 40 to 38, so n changes by 38 - 40 = -2. Thus, the slope is

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{\text{change in } n}{\text{change in } p} = \frac{-2}{1} = -2$$

b. In moving from the point (p, n) = (7, 38) to the point (p, n) = (8, 36), p increases from 7 to 8, so p changes by 1. Similarly, n decreases from 38 to 36, so n changes by -2. Thus, the slope is

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{\text{change in } n}{\text{change in } p} = \frac{-2}{1} = -2$$

- c. In the context of the problem, the 1 in the denominator represents a price increase of \$1, and the −2 in the numerator indicates that the number sold decreased by 2. The fact that the slopes are the same in parts (a) and (b) indicates that a price increase of \$1 consistently corresponds to a sales decrease of 2 pairs of sunglasses. In the context of the graph, equal slopes means that the steepness doesn't change; that is, the 3 points lie on a line.
- d. A charge of \$9 per pair of sunglasses is a \$1 increase above an \$8 price. Each \$1 increase consistently corresponded to a sales decrease of 2 pairs, so sales should decrease to 34 pairs per day, if future sales are consistent with past sales.

Since a change in y is calculated by subtracting y-values, and a change in x is calculated by subtracting x-values, we have the following formula.

Slope Formula

The **slope** m of the line passing through the points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

In the preceding formula, each of the symbols is meant to be a memory aid. For example, y_2 means the y-coordinate of the second point, and x_1 means the x-coordinate of the first point.

EXAMPLE 2 Find and interpret the slope of the line passing through the points (-1, -3) and (4, 7). Graph the points and the line, and show the rise and the run.

Select (-1, -3) as the first point [so $(x_1, y_1) = (-1, -3)$] and (4, 7) as the second point [so $(x_2, y_2) = (4, 7)$], and substitute into the slope definition.