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PREFACE

|

TOUR OF THE
Book

Ease of Use

Course Prerequisite

Algebra Review

Typically, a student takes a finite mathematics course to satisfy either a major or graduation
requirement. Thus, the course can be populated with students ranging from business majors
to biology majors to liberal arts majors. The goal of Finite Mathematics: Practical
Applications is to familiarize students with the mathematics used in their major fields of
study and to expose liberal arts students to topics in mathematics that are usable and rele-
vant to any educated person. It is our hope that each student will encounter several topics
that will prove useful over the course of his or her life. In addition, we hope that students
will see that mathematics is relevant to their education and that there is a human aspect to
mathematics.

This book is user-friendly. The examples don’t skip steps; key points are boxed for em-
phasis; step-by-step procedures are given; and there is an abundance of explanation. The
Instructor’s Manual includes a “prerequisite map” so that the instructor can easily tell
which earlier topics must be covered.

Finite Mathematics: Practical Applications is written for the student who has successfully
completed a course in algebra. A background in beginning algebra may be sufficient; how-
ever, the authors have found that the student who has a background in intermediate algebra
is significantly better prepared for the course.

Where appropriate, algebraic topics are reviewed, but in a very selective and focused man-
ner. Only those topics that are used in the book are covered. There is no “Review of
Algebra” chapter; instead, the reviews are placed as close as possible to the topics that uti-
lize them, usually in a Section 0 at the beginning of the chapter. These sections are direct
and to the point. They do not attempt to provide a thorough treatment of the algebra in
question but rather focus on the algebra that will be used in the sections that follow.
Typically, they do not cover applications of the algebra, which are covered in the follow-
ing sections.

Algebra courses vary significantly from school to school. Among the Section 0 top-
ics are some that students may not have seen before, such as matrix arithmetic and the
elimination method. In these cases, the reviews are more detailed and assume less prior
knowledge.



vi PREFACE

Technology

I]

Calculators and computers are useful and powerful tools that have become an integral
part of the classroom and workplace. However, many students are unable to use their cal-
culators effectively and have no mathematical experience using computers. Therefore,
instructions for graphing calculator, scientific calculator, and computer use are included.

Detailed instructions for both scientific and graphing calculator use are given in cal-
culator boxes throughout the text:

Scientific calculator instructions are identified with this scientific calculator icon.

Graphing calculator instructions are identified with this graphing calculator icon.

Furthermore, a number of optional technology subsections address some of the more
advanced capabilities of graphing calculators and computers. These subsections allow in-
structors to incorporate technology into their classes if and when they desire, but they are en-
tirely optional, and the text is in no way technology dependent. The subsections, identified
with italics in the table of contents, are clearly identified in the text with an icon at the begin-
ning of the subsection, and with a colored bar at the edge of the page as in this portion of the
preface. The subsections are always preceded by technology-free discussion and exercises.

The technology subsections that focus on graphing calculators were specifically written
for Texas Instruments models TI-82, TI-83, TI-85, and TI-86; however, they frequently ap-
ply to other brands as well. They are identified by the graphing calculator icon. See the table
of contents for a complete listing.

The text also features Amortrix, a computer software supplement written specifically
to accompany this text. It is available for Macintosh and Windows-based computers; it is also
accessible on the World Wide Web (see Ancillaries section, below). The software shows stu-
dents the value of using a computer in computationally intensive areas, without relieving the
student of decision-making responsibilities. Amortrix has two capabilities:

e [t will execute specific matrix row operations. After inputting a matrix, the student can
instruct the computer to multiply row 2 by 3, and add the result to row 1. However,
Amortrix will not “take over” and do a problem for the student—the student must
decide where and how to pivot, and the computer will perform only the calculations.

e [t will create an amortization schedule. However, Amortrix will not compute the last
line correctly; instead, it uses the same algorithm on all lines of the schedule, forcing
the student to correct the last line so that there is a zero balance.

The use of Amortrix is addressed in optional technology subsections in Chapter 2
(Systems of Linear Equations and Inequalities), Chapter 3 (Linear Programming: The
Simplex Method), and Chapter 10 (Finance). The software is not an integral part of this
book; the topics can be covered quite reasonably without any computer use.

Finally, an optional technology subsection gives instructions on the use of computer-
ized spreadsheets (such as Microsoft Excel and Lotus 1-2-3) in creating amortization
schedules.
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Exercises

Answers
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Subsections that make use of the Amortrix software or spreadsheets are identified by
a computer icon. Some technology subsections provide support for both graphing calcula-
tors and software, and are identified by both icons.

The history of the subject matter is interwoven throughout most chapters. In addition,
Historical Notes give in-depth biographies of the prominent people involved. It is our hope
that students will see that there is a human aspect to mathematics. After all, mathematics
was invented by real people for real purposes and is a part of our culture. Interesting re-
search topics are given, and writing assignments are suggested. Short-answer historical
questions are also included; they are intended to focus and reinforce the students’ under-
standing of the historical material. They also serve to warn students that history questions
may appear on exams.

The exercises vary in difficulty. Some are exactly like the examples, and others expect more
of the students. The exercises are not explicitly graded into A, B, and C categories, nor are
any marked “optional” (students in this audience tend to react negatively if asked to do any-
thing labeled in this manner). The more difficult exercises are indicated in the Instructor’s
Resource Manual.

Applications are stressed, and the student is usually given real or realistic data.
Furthermore, the student is usually given information at a realistic level. For example, in
Chapter 1 on Linear Equations, the student is not given cost and revenue functions, since
it is not realistic to assume that this level of information would be available. Instead, he or
she is given data and is asked to compute the cost and revenue functions, as well as the
break-even point.

Critical thinking is also stressed. For example, the student is frequently asked to in-
terpret a quantitative answer, give advice based on a quantitative answer, discuss assump-
tions, or make a prediction. Writing exercises are common, as are exercises that could be
used in a group situation. Essay questions are also common; they can be used as an inte-
gral part of the students’ grades, as a background for classroom discussion, or as extra credit
work. Many are research topics and are kept as open-ended as possible.

Throughout the text, there is emphasis on the importance of checking one’s answers.
Thus, students learn to evaluate the reasonableness of their answers rather than accepting
them at face value.

Answers to the odd-numbered exercises are given in the back of the book, with two exceptions:

* Answers to historical questions, interpretive questions, essay questions, and other
open-ended questions are not given.

e Answers are not given when the exercises instruct the students to check the answers
themselves.

The Students’ Solutions Manual contains solutions to every other odd exercise. Thus,
the instructor has access to four different types of exercises:

e Exercises that have an answer in the back of the book and a solution in the Student
Solutions Manual.
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e Exercises that have an answer in the back of the book but no solution in the Student
Solutions Manual.

e Exercises that have neither an answer in the back of the book nor a solution in the
Student Solutions Manual.

* Exercises that require the student to check his or her answer.
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ter summaries, and suggestions for teaching from the text.
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Amortrix (Macintosh ISBN 0-534-35597-8; Windows 95/NT ISBN 0-534-35699-0;
Windows 3.x ISBN 0-534-35695-8; Java http://www.brookscole.com/math/amortrix/)
This software accompanies Chapter 2 (Systems of Linear Equations and Inequalities),
Chapter 3 (Linear Programming: The Simplex Method), and Chapter 4 (Matrix Equations).
The software executes matrix row operations and creates amortization schedules. It shows
students the value of using a computer in computationally intensive areas. It will run on a
network, independent computer, or over the Web, and is free to adopters of the text.

Printed Test Items (ISBN 0-534-35849-7) contains printed test forms, with answers, for
instructors.

Thomson World Class Testing Tools (Macintosh ISBN 0-534-35859-4 and 0-534-
36284-2; Windows ISBN 0-534-35848-9 and 0-534-36285-0) This fully-integrated suite
of test creation, delivery, and classroom management tools includes World Class Test, Test
Online, and World Class Management software. World Class Testing Tools allows profes-
sors to deliver tests via print, floppy, hard drive, LAN, or Internet. With these tools, pro-
fessors can create cross-platform exam files from publisher files or existing WESTest 3.2
test banks, create and edit questions, and provide their own feedback to objective test
questions—enabling the system to work as a tutorial or an examination. In addition, pro-
fessors can generate questions algorithmically, creating tests that include multiple-choice,
true/false, and matching questions. Professors can also track the progress of an entire class
or an individual student. Testing and tutorial results can be integrated into the class man-
agement tool, which offers scoring, gradebook, and reporting capabilities.
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You have studied three different

branches of mathematics:
arithmetic, algebra, and geometry.
Algebra involves equations and
inequalities, while geometry
involves shapes and graphs.
Analytic geometry is a bridge
between algebra and geometry. It
emphasizes a correspondence
between equations and graphs;
every equation has a graph, and
most graphs have equations. This
correspondence is a fruitful one; it
allows algebra problems to be
attacked with the tools of
geometry in addition to the tools
of algebra.

Business analysts and
economists use a great deal of
analytic geometry in their fields.

In this chapter we will investigate
some of the mathematics used in
business and economics. In
particular, we will investigate the
Central State University’s
Business Club and its attempt to
make money selling T-shirts at
football games. This enterprise
involves the careful

. determination of the quantity of

shirts to order as well as of the
shirts’ sales price. Ordering too
many shirts or charging too
much would result in the club’s
buying shirts they can’t sell, and
ordering too few or charging too
little would result in not having
enough to sell; in either event,
the club would lose revenue.

1.0
LINES AND THEIR
EQUATIONS

11
FuncTiOnS

1.2
LiNnEAR MIODELS IN
Business Anbp Economics

13
LinEAR REGRESSION



2 CHAPTER 1
1.0
[ —
[ —
LinNES AND
THEIR
EQuATIONS
Cartesian
Coordinates
JRE 1.1
Number
‘ Price l sold
$6 ‘ 40
$7 38 ‘
$8 36 ;
RE 1.2
Number A
sold (n)
40 ®
39+
38 (]
37+
36 ®
351
i ) ) —l
5 6 7 8§ Price
P)

LINEAR EQUATIONS

Stuart sells sunglasses from a stand at Venice Beach. After experimenting with prices, he
discovered (not surprisingly) that the more he charges, the less he sells. For several days
Stuart charged $6 per pair. He kept records on the number of pairs sold and found that
he sold an average of 40 pairs per day at that price. This and similar data are given in
Figure 1.1.

Stuart’s data can be illustrated graphically by drawing two perpendicular number
lines, where the horizontal number line represents price and the vertical number line repre-
sents number sold, as shown in Figure 1.2. Notice that both number lines have breaks; the
price is always above 5, and the number sold is always above 35.

The upper-left point in Figure 1.2 is directly above 6 on the horizontal number line,
so it corresponds to a price of $6. It is also directly across from 40 on the vertical number
line, so it corresponds to 40 pairs sold. If we let p refer to price and n refer to number sold,
the upper-left point could be labeled p = 6, n = 40. A more traditional way of labeling this
point is to write (p, n) = (6, 40). This is called an ordered pair, because it is a pair of num-
bers written in a certain order. The order is important; if we write (40, 6), we get the incor-
rect statement that at a price of $40, 6 pairs are sold.

The number 6 is called the p-coordinate of the ordered pair, and the number 40 is
called the n-coordinate. The system of graphing is called Cartesian coordinates, in honor
of René Descartes, a mathematician and philosopher. (Oddly, while Descartes explored the
relationship between algebra and geometry, he neither invented nor utilized the system that
bears his name.)



FIGURE 1.3

Slope

EXAMPLE 1

There are two different traditions of the use of letters in this type of situation:

e Usexandy
o Use letters that refer to the quantity being measured, as p refers to price and n
refers to number sold above

Descartes started the former tradition; he used letters from the end of the alphabet to rep-
resent variables. This tradition is usually adhered to in algebra classes. However, in an ap-
plication like this one, the latter tradition can serve as a valuable memory aid.

When the “x and y” tradition is followed, we have x-coordinates and y-coordinates
rather than p-coordinates and n-coordinates. The horizontal axis is called the x-axis,
and the vertical axis is called the y-axis. In the above discussion, we used p and n
rather than x and y, respectively, so the horizontal axis is the p-axis, and the vertical axis
is the n-axis. The two axes meet where both p and n are 0; this point, (0, 0), is called
the origin.

In Figure 1.3, we show x- and y-axes that include both positive and negative values
(the negative values are on the left end of the x-axis and on the lower end of the y-axis).
The upper-left point corresponds to the ordered pair (x, y) = (—2, 3), since it is above —2
on the x-axis and across from 3 on the y-axis.

-3 2 -1 1 2 3
° —14
(-3.-1)
g )
(3,-2)

—3: 0, -3)

A line’s steepness is measured by its slope. Slope (usually denoted by the letter m) is the
ratio of the rise (the change in y) to the run (the change in x):
rise _ changeiny

slope = m = = :
run  change in x

a. Calculate the slope of the line between the ordered pairs (p, n) = (6, 40) and (p, n) = (7, 38)
from Stuart’s sales data.

b. Calculate the slope of the line between the ordered pairs (p, n) = (7, 38) and (p, n) = (8, 36)
from Stuart’s sales data.

c¢. Determine what these slopes measure in the context of the problem.

d. Use the slope to predict the number of sunglasses that will sell at $9. What is this pre-
diction based on?
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CHAPTER 1 LINEAR EQUATIONS

Solution

EXAMPLE 2

Solution

Here our ordered pairs are (p, n), rather than (x, y). Thus,

rise  changeinn
slope=—= """
run  changeinp
a. In moving from the point (p, n) = (6, 40) to the point (p, n) = (7, 38), p increases from
6to 7, so p changes by 7 — 6 = 1. Similarly, n decreases from 40 to 38, so n changes by
38 — 40 = —2. Thus, the slope is
rise  changeinn =2
slope=——=-—"—"—"——— = —
run  changeinp 1
b. In moving from the point (p, n) = (7, 38) to the point (p, n) = (8, 36), p increases from
7 to 8, so p changes by 1. Similarly, n decreases from 38 to 36, so n changes by —2. Thus,
the slope is
rise  changeinn —2
slope=—=—""—"—""=—"7"= =2
run  changeinp l
c. In the context of the problem, the 1 in the denominator represents a price increase of
$1, and the —2 in the numerator indicates that the number sold decreased by 2. The
fact that the slopes are the same in parts (a) and (b) indicates that a price increase of
$1 consistently corresponds to a sales decrease of 2 pairs of sunglasses. In the context
of the graph, equal slopes means that the steepness doesn’t change; that is, the 3 points
lie on a line.
d. A charge of $9 per pair of sunglasses is a $1 increase above an $8 price. Each $1 increase
consistently corresponded to a sales decrease of 2 pairs, so sales should decrease to
34 pairs per day, if future sales are consistent with past sales. °

Since a change in y is calculated by subtracting y-values, and a change in x is calcu-
lated by subtracting x-values, we have the following formula.

Slope Formula

The slope m of the line passing through the points (x,, y;) and (x,, y,) is

Y2 ™ Y
m==2—1

X, — X

In the preceding formula, each of the symbols is meant to be a memory aid. For ex-
ample, y, means the y-coordinate of the second point, and x, means the x-coordinate of the
first point.

Find and interpret the slope of the line passing through the points (—1, —3) and (4, 7).
Graph the points and the line, and show the rise and the run.

Select (—1, —3) as the first point [so (x;, y;) = (—1, —3)] and (4, 7) as the second point
[s0 (x5, v») = (4, 7)], and substitute into the slope definition.



