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Preface

In this monograph a general method for solving operator equations, es-
pecially nonlinear and ill-posed, is developed. The method is called the
dynamical systems method (DSM). Suppose one wants to solve an opera-
tor equation:

F(u) =0, (1)

where F' is a nonlinear or linear map in a Hilbert or Banach space. We
assume that equation (1) is solvable, possibly non-uniquely. The DSM for
solving equation (1) consists of finding a map ® such that the Cauchy
problem

i=®(tu), u()=up u= Z—? 2)

has a unique global solution, i.e., solution u(t) defined for all ¢t > 0, there
exists
u(o0) = tlim u(t), and F(u(o0)) = 0:
— 00

Ju Vt>0; Ju(co); F(u(o)) =0. (3)

If (3) holds, we say that DSM is justified for equation (1). Thus the
dynamical system in this book is a synonym to an evolution problem (2).
This explains the name DSM. The choice of the initial data u(0) will be
discussed for various classes of equations (1). It turns out that for many
classes of equations (1) the initial approximation ug can be chosen arbi-
trarily, and, nevertheless, (3) holds, while for some problems the choice of
up, for which (3) can be established, is restricted to some neighborhood of
a solution to equation (1).

We describe various choices of ® in (2) for which it is possible to justify
(3). It turns out that the scope of DSM is very wide. To describe it, let us
introduce some notions. Let us call problem (1) well-posed if

sup ||[F'(w)] || < m(R), (4)

u€B(uo,
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where B(ug,R) = {u : |lu— uo|| < R}, F'(u) is the Fréchet derivative
(F-derivative) of the operator-function F' at the point u, and the constant
m(R) > 0 may grow arbitrarily as R grows. If (4) fails, we call problem
(1) #ll-posed . 1f problem (1) is ill-posed, we write it often as F/(u) = f and
assume that noisy data f5 are given in place of f, ||fs — f|| < 4. Although
the equation F'(u) = f is solvable, the equation F(u) = f; may have no
solutions.
The problem is:

Given {4, f5, F}, find a stable approzimation us to a solution u of the

equation F(u) = f, i.e., find us such that

lim [[us —u|| = 0. (5)

Unless otherwise stated, we assume that

sup |[FY(u)|| < M;(R), 0<j<2, (6)
uw€B(uy,R)

where M;(R) are some constants. In other words, we assume that the
nonlinearity is CZ ., but the rate of its growth, as R grows, is not restricted.
Let us now describe briefly the scope of the DSM.
Any well-posed problem (1) can be solved by a DSM which converges at
an exponential rate, i.e.,

llu(00) — u(t)l] < re™, || (u(®)|| < |[Folle™", (7)

where r > 0 and ¢; > 0 are some constants, and Fy := F(ug).

For ill-posed problems, in general, it is not possible to estimate the rate
of convergence; depending on the data f this rate can be arbitrarily slow.
To estimate the rate of convergence in an ill-posed problem one has to make
some additional assumptions about the data f. Remember that by "any”
we mean throughout any solvable problem (1).

Any solvable linear equation

F(u)=Au— f =0, (8)

where A is a closed, linear, densely defined operator in a Hilbert space H,
can be solved stably by a DSM. If noisy data fs5 are given, ||fs — f|| <9,
then DSM vyields a stable solution us for which (5) holds.

We derive stopping rules, i.e., rules for choosing t(9) := ts, the time at
which us(ts) = us should be calculated, using f5 in place of f, in order for
(5) to hold.

For linear problems (8) the convergence of a suitable DSM is global with
respect to ug, i.e., DSM converges to the unique minimal-norm solution of
y of (8) for any choice of ug.
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Similar results we prove for equations (1) with monotone operators
F: H — H. Recall that F is called monotone if

(F(u) — F(v),u—v) >0 Vu,v € H, (9)

where H is a Hilbert space. For hemicontinuous monotone operators
the set N = {u : F(u) = 0} is closed and convex, and such sets in
a Hilbert space have unique minimal-norm element. A map F is called
hemicontinuous if the function (F(u + Av),w) is continuous with respect
to A € [0, \o) for any u,v,w € H, where \g > 0 is a number.

DSM is justified for any solvable equation (1) with monotone operators
satisfying conditions (6). Note that no restrictions on the growth of M;(R)
as R grows are imposed, so the nonlinearity is Clzoc but may grow arbitrarily
fast. For monotone operators we will drop assumption (6) and construct a
convergent DSM.

We justify DSM for arbitrary solvable equation (1) in a Hilbert space
with CE, nonlinearity under a very weak assumption:

F'(y) # 0, (10)

where y s a solution to equation (1).
We justify DSM for operators satisfying the following spectral assump-
tion:

[[(F'(u)+¢)7Y| <=, 0<e<ey, VuecH, (11)

(LI

where €9 > 0 is an arbitrary small fixed number. Assumption (11) is
satisfied, for example, for operators F’(u) whose regular points, i.e., points
z € C such that (F'(u) — 2z)~! is a bounded linear operator, fill in the set

|z| < eo, |argz — 7| < o, (12)

where o > 0 is an arbitrary small fixed number. We also prove the
existence of a solution to the equation:

F(u) +eu=0, (13)

provided that (6) and (11) hold.

We discuss DSM for equations (1) in Banach spaces. In particular,
we discuss some singular perturbation problems for equations of the type
(13): under what conditions a solution u. to equation (13) converges to a
solution of equation (1) as ¢ — 0.

In Newton-type methods, e.g.,

= —[F'(u)]"'F(u), u(0) = up, (14)
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the most difficult and time-consuming part is the inversion of the derivative
F'(u).
We propose a DSM method which avoids the inversion of the derivative.
For example, for well-posed problem (1) such a method is

i = —QF(u), u(0)= uo,

Q = -TQ+A", Q0)=Qo, (15)
where

A:=F'(u), T=A*A, (16)

A* is the adjoint to A operator, and ug and Qg are suitable initial approx-
imations.

We also give a similar DSM scheme for solving ill-posed problem (1).

We justify DSM for some classes of operator equations (1) with un-
bounded operators, for example, for operators F(u) = Au + g(u) where A
is a linear, densely defined, closed operator in a Hilbert space H and g is a
nonlinear CZ. map.

We justify DSM for equations (1) with some nonsmooth operators, e.g.,
with monotone, hemicontinuous, defined on all of H operators.

We show that the DSM can be used as a theoretical tool for proving
conditions sufficient for the surjectivity of a nonlinear map or for this map
to be a global homeomorphism.

One of our motivations is to develop a general method for solving opera-
tor equations, especially nonlinear and ill-posed. The other motivation is to
develop a general approach to constructing convergent iterative processes
for solving these equations.

The idea of this approach is straightforward: if the DSM is justified for
solving equation (1), i.e., (3) holds, then one considers a discretization of
(2), for example:

Un41 = Un + An®(tn, un), uo =uo, tny1 =1ty + hn, (17)

and if one can prove convergence of (17) to the solution of (2), then (17)
is a convergent iterative process for solving equation (1).

We prove that any solvable linear equation (8) (with bounded or un-
bounded operator A) can be solved by a convergent iterative process which
converges to the unique minimal-norm solution of (8) for any initial ap-
proximation ug.

A similar result we prove for solvable equation (1) with monotone op-
erators.
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For general nonlinear equations (1), under suitable assumptions, a con-
vergent iterative process is constructed. The initial approximation in this
process does not have to be in a suitable neighborhood of a solution to (1).

We give some numerical examples of applications of the DSM. A detailed
discussion of the problem of stable differentiation of noisy functions is given.

New technical tools, that we often usein this book, are some novel
differential inequalities.

The first of these deals with the functions satisfying the following in-
equality:

9 < —(t)g(t) + at)g®(t) + B(t), t=to 20, (18)

where g,7, a, 8 are nonnegative functions, and v, and 3 are continuous
on [tg,00). We assume that there exists a positive function u € C[tg, ),
such that

Y BRI
0<a <52 (v -58). 80 < s (40 -22), a9
u(to)g(to) < 1, (20)

and prove that under the above assumptions, any nonnegative solution g(t)
to (18) is defined on [to, 00) and satisfies the following inequality:
1—u(t)

0<g(t) < —— < —

1
PORRNC) @)

1

v(t) = .
1 1t (s
1—p(to)g(to) + 2 fto (’)’(S) - uJ(E%) ds
The other inequality, which we use, is an operator version of the Gron-
wall inequality. Namely, assume that:

Q=-T(t)Q(t) +G(t), Q(0)=Qo, (23)

where T'(t) and G(t) are linear bounded operators on a Hilbert space de-
pending continuously on a parameter ¢t € [0, 00). If there exists a continuous
positive function £(¢) on [0, 00) such that

(22)

(T(t)h,h) > €(t)||h||* VYhe H, (24)

then the solution to (23) satisfies the inequality:

t
Q)] < e Jo =)o ['IQoII +/0 1G(s)|efo <= s | . (25)
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This inequality shows that Q(t) is a bounded linear operator whose
norm is bounded uniformly with respect to t if

t
- / 1G(s)|le= - £@42 s < oo, (26)
>0 Jo

The DSM is shown to be useful as a tool for proving theoretical results,
see Chapter 13.

The DSM is used in Chapter 14 for construction of convergent iterative
processes for solving operator equation.

In Chapter 15 some numerical problems are discussed, in particular, the
problem of stable differentiation of noisy data.

In Chapter 16 various auxiliary material is presented. Together with
some known results, available in the literature, some less known results are
included: a necessary and sufficient condition for compactness of embed-
ding operators and conditions for the continuity of the solutions to operator
equations with respect to a parameter.

The table of contents gives a detailed list of topics discussed in this
book.
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Chapter 1

Introduction

1.1 What this book is about
This book is about a general method for solving operator equations
F(u) =0. (1.1.1)

Here F' is a nonlinear map in a Hilbert space H. Later on we consider maps
F in Banach spaces as well. The general method, that we develop in this
book and call the dynamical systems method (DSM), consists of finding a
nonlinear map ®(t,u) such that the Cauchy problem

= ®(tu), u(0)=ug, (1.1.2)

has a unique global solution u(t), that is, the solution defined for all t > 0,
this solution has a limit u(o00):

tl_l‘rglo [Ju(oo) — u(t)|| =0, (1.1.3)
and this limit solves equation (1.1.1):

F(u(o0)) =0. (1.1.4)
Let us write these three conditions as

Jlu(t) VE>0; Ju(oco); F(u(oo))=0. (1.1.5)

If (1.1.5) holds for the solution to (1.1.2) then we say that a DSM is
justified for solving equation (1.1.1). There may be many choices of ®(t,u)
for which DSM can be justified. A number of such choices will be given in

1



2 1. INTRODUCTION

Chapter 3 and in other Chapters. It should be emphasized that we do not
assume that equation (1.1.1) has a unique solution. Therefore the solution
u(00) depends on the initial approximation ug in (1.1.2). The choice of ug
in some cases is not arbitrary and in many cases this choice is arbitrary, for
example, for problems with linear operators, nonlinear monotone operators,
and for a wide class of general nonlinear problems (see Chapters 4, 6, 7-9,
11-12, 14).

The existence and uniqueness of the local solution to problem (1.1.2) is
guaranteed, for example, by a Lipschitz condition imposed on ®:

[|®(t,u) — ®(t,v)|| < L||u —v||, wu,v € B(uo, R), (1.1.6)
where the constant L does not depend on t € [0,00) and
B(uo, R) = {u: |lu—uol| < R}

is a ball, centered at the element ug € H and of radius R > 0.

1.2 What the DSM (Dynamical Systems Method) is

The DSM for solving equation (1.1.1) consists of finding a map ®(t, u) and
an initial element u( such that conditions (1.1.5) hold for the solution to
the evolution problem (1.1.2).

If conditions (1.1.5) hold, then one solves Cauchy problem (1.1.2) and
calculates the element u(oco). This element is a solution to equation (1.1.1).
The important question one faces after finding a nonlinearity ®, for which
(1.1.5) hold, is the following one: how does one solve Cauchy problem
(1.1.2) numerically? This question has been studied much in the literature.
If one uses a projection method, i.e., looks for the solution of the form:

J
u(t) =Y u;(t)fi, (1.2.1)
j=1

where { fj} is an orthonormal basis of H, and J > 1 is an integer, then
problem (1.1.2) reduces to a Cauchy problem for a system of J nonlinear
ordinary differential equations for the scalar functions u;(t), 1<j < J,if
the right-hand side of (1.1.2) is projected onto the J-dimensional subspace
spanned by {f;}1<j<s. This system is:

J
uj = (CD(Z um(t)fm,t),fj) , 1<5<, (1.2.2)
m=1

u;(0) = (uo, f3), 1<j<J. (1.23)
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Numerical solution of the Cauchy problem for systems of ordinary differ-
ential equations has been much studied in the literature.

In this book the main emphasis is on the possible choices of ® which
imply properties (1.1.5).

1.3 The scope of the DSM

One of our aims is to show that DSM is applicable to a very wide variety
of problems.

Specifically, we prove in this book that the DSM is applicable to the
following classes of problems:

1. Any well-posed solvable problem (1.1.1) can be solved by DSM.

By a well-posed problem (1.1.1) we mean the problem with the oper-
ator F satisfying the following assumptions:

sup [[[F'(uw)] 71| < m(R), (1.3.1)
u€ B(uo,R)
and
sup [|[F9(u)|| < Mj(R), 0<j<2, (1.3.2)
'uGB(‘U.(),R)

where F()(u) is the j-th Fréchet derivative of F.

If assumption (1.3.1) does not hold, but (1.3.2) holds, we call prob-
lem (1.1.1) ill-posed. This terminology is not quite standard. The
standard notion of an ill-posed problem is given in Section 2.1.

We prove that for any solvable well-posed problem not only the DSM
can be justified, i.e., ® can be found such that for problem (1.1.2)
conclusions (1.1.5) hold, but, in addition, the convergence of u(t) to
u(00) is exponentially fast:

[|u(t) — u(o0)|| < re=, (1.3.3)
where r > 0 and ¢; > 0 are constants, and
IF(u(t)l] < ||Folle™*,  Fo = F(uo). (1.3.4)
2. Any solvable linear ill-posed problem can be solved by DSM.
A linear problem (1.1.1) is a problem
Au = f, (1.3.5)



