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Preface

This monograph is an introductory book on the Theory of Random Matrices
(RMT). The theory dates back to the early development of Quantum Mechan-
ics in the 1940’s and 50’s. In an attempt to explain the complex organizational
structure of heavy nuclei, E. Wigner, Professor of Mathematical Physics at
Princeton University, argued that one should not compute energy levels from
Schrodinger’s equation. Instead, one should imagine the complex nuclei sys-
tem as a black box described by n x n Hamiltonian matrices with elements
drawn from a probability distribution with only mild constraints dictated by
symmetry considerations. Under these assumptions and a mild condition im-
posed on the probability measure in the space of matrices, one finds the joint
probability density of the n eigenvalues. Based on this consideration, Wigner
established the well-known semi-circular law. Since then, RMT has been de-
veloped into a big research area in mathematical physics and probability. Its
rapid development can be seen from the following statistics from Mathscinet
database under keyword Random Matrix on 10 June 2005 (See Table 0.1.)

1955—1964 | 1965—1974 | 1975—1984 | 1985—1994 | 1995-—2004
23 138 249 635 1205

Table 0.1. Publication numbers on RMT in 10 year periods since 1955

Modern developments in computer science and computing facilities moti-
vate ever widening applications of RMT to many areas.

In statistics, classical limit theorems have been found to be seriously in-
adequate in aiding in the analysis of very high dimensional data.

In the biological sciences, a DNA sequence can be as long as several billions.
In finance research, the number of different stocks can be as large as tens of
thousands.

In wireless communications, the number of users can be several millions.



ii Preface

All of these areas are challenging classical statistics. Based on these needs,
the number of researchers on RMT is gradually increasing. The purpose of
this monograph is to introduce the basic results and methodologies developed
in RMT. We assume readers of this book are graduate students and beginning
researchers who are interested in RMT. Thus, we are trying to provide the
most advanced results with proofs using standard methods, as detailed as we
can.

With more than a half century’s development of RMT, many different
methodologies have been developed in the literature. Due to the limitation of
our knowledge and length of the book, it is impossible to introduce all the
procedures and results. What we shall introduce in this book are those results
either obtained under moment restrictions using the moment convergence the-
orem, or the Stieltjes transform.

In an attempt at complementing the material presented in this book, we
have listed some recent publications on RMT which we have not introduced.

The authors would like to express their appreciation to Professors Chen
Mufa, Lin Qun, Shi Ningzhong and Ms. Lii Hong for their encouragement
and help in the preparation of the manuscript. They would also like to thank
Professors Zhang Baoxue, Lee Sungchul, Zheng Shurong, Zhou Wang and Hu
Guorong for their valuable comments and suggestions.

Changchun, China Zhidong Bai
Cary, North Carolina, USA Jack W. Silverstein
June 2006
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1

Introduction

1.1 Large Dimensional Data Analysis

The aim of this book is to investigate the spectral properties of random ma-
trices (RM) when their dimensions tend to infinity. All classical limiting theo-
rems in statistics are under the assumption that the dimension of data is fixed.
Then, it is natural to ask why the dimension needs to be considered large and
whether there are any differences between the results for fixed dimension and
those for large dimension.

In the past three or four decades, a significant and constant advancement in
the world has been in the rapid development and wide application of computer
science. Computing speed and storage capability have increased a thousand
fold. This has enabled one to collect, store and analyze data sets of very high
dimension. These computational developments have had strong impact on
every branch of science. For example, R. A. Fisher’s resampling theory had
been silent for more than three decades due to the lack of efficient random
number generators, until Efron proposed his renowned bootstrap in the late
1970’s; the minimum L norm estimation had been ignored for centuries since
it was proposed by Laplace, until Huber revived it and further extended it
to robust estimation in the early 1970’s. It is difficult to imagine that these
advanced areas in statistics would have gotten such deep stages of development
if there were no such assistance from the present day computer.

Although modern computer technology helps us in so many aspects, it
also brings a new and urgent task to the statisticians, that is, whether the
classical limit theorems (i.e., those assuming fixed dimension) are still valid
for analyzing high dimensional data and how to remedy them if they are not.

Basically, there are two kinds of limiting results in multivariate analysis:
those for fixed dimension (classical limit theorems) and those for large dimen-
sion (large dimensional limit theorems). The problem turns out to be which
kind of results is closer to reality? As argued in Huber (1973), some statisti-

cians might say that five samples for each parameter in average are enough
for using asymptotic results. Now, suppose there are p = 20 parameters and
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we have a sample of size n = 100. We may consider the case as p = 20 being
fixed and n tending to infinity, or p = 24/n, or p = 0.2n. So, we have at least
three different options to choose for an asymptotic setup. A natural question
is then, which setup is the best choice among the three? Huber strongly sug-
gested to study the situation of increasing dimension together with the sample
size in linear regression analysis.

This situation occurs in many cases. In parameter estimation for a struc-
tured covariance matrix, simulation results show that parameter estimation
becomes very poor when the number of parameters is more than 4. Also, it
is found that in Egeg/r\rggressiog/ % if the covariates are random (or
having measurement errorsm the number of covariates is larger than six,
the behavior of the estimates departs far away from the theoretic values, un-
less the sample size is very large. In signal processing, when the number of
signals is two or three and the number of sensors is more than 10, the tra-
ditional MUSIC (MUltivariate SIgnal Classification) approach provides very
poor estimation of the number of signals, unless the sample size is larger than
1000. Paradoxically, if we use only half of the data set, namely, we use the
data set collected by only five sensors, the signal number estimation is almost
hundred-percent correct if the sample size is larger than 200. Why this para-
dox would happen? Now, if the number of sensors (the dimension of data) is
p, then one has to estimate p? parameters (%p(p + 1) real parts and 3p(p— 1)
imaginary parts of the covariance matrix). Therefore, when p increases, the
number of parameters to be estimated increases proportional to p? while the
number (2np) of observations increases proportional to p. This is the underly-
ing reason of this paradox. This suggests that one has to revise the traditional
MUSIC method if the sensor number is large.

An interesting problem was discussed by Bai and Saranadasa (1996) who
theoretically proved that when testing the difference of means of two high
dimensional populations, Dempster’s (1959) non-exact test is more powerful
than Hotelling’s T2 test even when the T?-statistic is well defined.

It is well known that statistical eﬁiciemgniﬁcamly reduced when
the dimension of data or number of parameters becomes large. Thus, several
techniques of dimension reduction were developed in multivariate statistical
analysis. As an example, let us consider a problem in principal component
analysis. If the data dimension is 10, one may select 3 principal components so
that more than 80% of the information is reserved in the principal components.
However, if the d_a/t\a&g[ggg_s\iqp‘ is/_l_@g_and 300 principal components are
selected, one would still have to face a high dimensional problem. If one only
chooses 3 principal components, he would have lost 90% or even more of
the information carried in the original data set. Now, let us consider another
example.

Example 1.1. Let X;; be iid standard normal variables. Write



