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C Chapter 1)

Rubber Elasticity: Basic
Concepts and Behavior

A.N. Gent
The University of Akron, Akron, OH, USA

1.1 INTRODUCTION

The single most important property of elastomers—that from which their name
derives—is their ability to undergo large elastic deformations; that is, to stretch
and return to their original shape in a reversible way. Theories to account for this
characteristic high elasticity have passed through three distinct phases: (1) the
carly development of a molecular model relating experimental observations
to the known molecular features of rubbery polymers; (2) generalization of
this approach by means of symmetry considerations taken from continuum
mechanics that are independent of the molecular structure; and (3) a critical
reassessment of the basic premises on which these two quantitative theories
are founded. In this chapter, the theoretical treatment is briefly outlined and
shown to account quite successfully for the observed elastic behavior of rubbery
materials. The special case of small elastic deformations is then discussed in
some detail because of its technical importance. Finally, attention is drawn to
some aspects of rubber elasticity that are still little understood.

1.2 ELASTICITY OF A SINGLE MOLECULE

The essential requirement for a substance to be rubbery is that it consist of
long flexible chainlike molecules. The molecules themselves must therefore
have a “backbone” of many noncollinear single valence bonds, about which
rapid rotation is possible as a result of thermal agitation. Some representative
molecular subunits of rubbery polymers are shown in Figure 1.1; thousands
of these units linked together into a chain constitute a typical molecule of
the elastomers listed in Figure 1.1. Such molecules change their shape readily
and continuously at normal temperatures by Brownian motion. They take up
random conformations in a stress-free state but assume somewhat oriented

The Science and Technology of Rubber. http:/dx.doi.org/10.1016/B978-0-12-394584-6.00001-7
@© 2013 Fisevier Inc. All rights reserved 1
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FIGURE 1.1 Repeat units for some common elastomer molecules.

(a) ' (b)

FIGURE 1.2 (a) Random chain and (b) oriented chain (from Gent, 1958).

conformations if tensile forces are applied at their ends (Figure 1.2). One of the
first questions to consider, then, is the relationship between the applied tension f
and the mean chain end separation r, averaged over time or over a large number
of chains at one instant in time.

Chains in isolation take up a wide variety of conformations,’ governed
by three factors: the statistics of random processes: a preference for certain
sequences of bond arrangements because of steric and energetic restraints
within the molecule; and the exclusion of some hypothetical conformations
that would require parts of the chain to occupy the same volume in space.
In addition, cooperative conformations are preferred for space-filling reasons
in concentrated solutions or in the bulk state.

Flory (1969) has argued that the occupied-volume exclusion (repulsion) for
an isolated chain is exactly balanced in the bulk state by the external (repulsive)
environment of similar chains, and that the exclusion factor can therefore be
ignored in the solid state. Direct observation of single-chain dimensions in
the bulk state by inelastic neutron scattering gives values fully consistent with
unperturbed chain dimensions obtained for dilute solutions in theta solvents?
(Cotton et al., 1972), although intramolecular effects may distort the local
randomness of chain conformation.

! Although the terms configuration and conformation are sometimes used interchangeably, the

former has acquired a special meaning in organic stercochemistry and designates specific steric
structures. Conformation is used here to denote a configuration of the molecule, which is arrived
at by rotation of single-valence bonds in the polymer backbone.

2 These are (poor) solvents in which repulsion between different segments of the polymer
molecule is balanced by repulsion between polymer segments and solvent molecules.
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Flory has again given compelling reasons for concluding that the chain end-
to-end distance rin the bulk state will be distributed in accordance with Gaussian
statistics for sufficiently long chains, even if the chains are relatively stiff and
inflexible over short lengths (Flory, 1969). With this restriction to long chains
it follows that the tension-displacement relation becomes a simple linear one,

f = Ar, (1.1)

where fis the tensile force, ris the average distance between the ends of the
chain, and A is inversely related to the mean square end-to-end distance rg for
unstressed chains,

A =3kT/rd, (1.2)

where k is Boltzmann’s constant and 7 is the absolute temperature.
If the real molecule is replaced by a hypothetical chain consisting of a large
number n of rigid, freely jointed links, each of length [ (Figure 1.3), then

ré = nl. (1.3)
In this case r(z) is independent of temperature because completely random
link arrangements are assumed. The tension fin Eq. (1.1) then arises solely
from an entropic mechanism; that is, from the tendency of the chain to adopt
conformations of maximum randomness, and not from any energetic preference
for one conformation over another. The tension f'is then directly proportional
to the absolute temperature 7.
For real chains, consisting of a large number n of primary valence bonds
along the chain backbone, each of length /,

r2 = Coonl?, (1.4)
where the coefficient Cy, represents the degree to which this real molecule

departs from the freely jointed model. C is found to vary from 4 to 10, depend-
ing on the chemical structure of the molecule and on temperature, because the

FIGURE 1.3 Model chain of freely jointed links.



