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Preface

Purpose of the book

This book is addressed to undergraduate and graduate students in physics,
mathematics and computer science. It is written at a level comprehen-
sible to readers with the background of a student near to the end of an
undergraduate course in one of the above three disciplines. Note that no
prior knowledge either of quantum mechanics or of classical computation
is required to follow this book. Indeed, the first two chapters are a sim-
ple introduction to classical computation and quantum mechanics. Our
aim is that these chapters should provide the necessary background for an
understanding of the subsequent chapters.

The book is divided into two volumes. In volume I, after providing
the necessary background material in classical computation and quantum
mechanics, we develop the basic principles and discuss the main results of
quantum computation and information. Volume I would thus be suitable
for a one-semester introductory course in quantum information and com-
putation, for both undergraduate and graduate students. It is also our
intention that volume I be useful as a general education for other readers
who would like to learn the basic principles of quantum computation and
information and who have the basic background in physics and mathemat-
ics acquired in undergraduate courses in physics, mathematics or computer
science.

Volume II deals with various important aspects, both theoretical and
experimental, of quantum computation and information. This volume nec-
essarily contains parts that are more technical or specialized. For its un-
derstanding, a knowledge of the material discussed in the first volume is
necessary.

vii
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General approach

Quantum computation and information is a new and rapidly developing
field. Tt is therefore not easy to grasp the fundamental concepts and cen-
tral results without having to face many technical details. Our purpose
in this book is to provide the reader interested in this field with a useful
and not overly heavy guide. Therefore, mathematical rigour is not our pri-
mary concern. Instead, we have tried to present a simple and systematic
treatment, such that the reader might understand the material presented
without the need for consulting other texts. Moreover, we have not tried to
cover all aspects of the field, preferring to concentrate on the fundamental
concepts. Nevertheless, the two volumes should prove useful as a reference
guide to researchers just starting out in the field.

To fully familiarize oneself with the subject, it is important to practice
solving problems. The book contains a large number of exercises (with
solutions), which are an essential complement to the main text. In order
to develop a solid understanding of the arguments dealt with here, it is
indispensable that the student try to solve a large part of them.

Note to the reader

Some of the material presented is not necessary for understanding the rest
of the book and may be omitted on a first reading. We have adopted two
methods of highlighting such parts:

1) The sections or subsections with an asterisk before the title contain
more advanced or complementary material. Such parts may be omitted
without risk of encountering problems in reading the rest of the book.

2) Comments, notes or examples are printed in a small typeface.
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About the Cover

This acrostic is the famous sator formula. It can be translated as:
‘Arepo the sower holds the wheels at work’

The text may be read in four different ways:

(i) horizontally, from left to right (downward) and from right to left
(upward);
(ii) vertically, downward (left to right) and upward (right to left).

The resulting phrase is always the same.
It has been suggested that it might be a form of secret message.

This acrostic was unearthed during archeological excavation work at
Pompeii, which was buried, as well known, by the eruption of Vesuvius in
79 A.D. The formula can be found throughout the Roman Empire, probably
also spread by legionnaires. Moreover, it has been found in Mesopotamia,
Egypt, Cappadocia, Britain and Hungary.

The sator acrostic may have a mystical significance and might have
been used as a means for persecuted Christians to recognize each other (it
can be rearranged into the form of a cross, with the opening words of the
Lord’sprayer, A Paternoster O, both vertically and horizontally, intersecting
at the letter N, the Latin letters A and O corresponding to the Greek letters
alpha and omega, beginning and end of all things).
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Introduction

Quantum mechanics has had an enormous technological and societal im-
pact. To appreciate this point, it is sufficient to consider the invention
of the transistor, perhaps the most remarkable among the countless other
applications of quantum mechanics. On the other hand, it is also easy to
see the enormous impact of computers on everyday life. The importance
of computers is such that it is appropriate to say that we are now living in
the information age. This information revolution became possible thanks
to the invention of the transistor, that is, thanks to the synergy between
computer science and quantum physics.

Today this synergy offers completely new opportunities and promises
exciting advances in both fundamental science and technological applica-
tion. We are referring here to the fact that quantum mechanics can be
used to process and transmit information.

Miniaturization provides us with an intuitive way of understanding why,
in the near future, quantum laws will become important for computation.
The electronics industry for computers grows hand-in-hand with the de-
crease in size of integrated circuits. This miniaturization is necessary to
increase computational power, that is, the number of floating-point opera-
tions per second (flops) a computer can perform. In the 1950’s, electronic
computers based on vacuum-tube technology were capable of perform-
ing approximately 10%® floating-point operations per second, while nowa-
days there exist supercomputers whose power is greater than 10 teraflops
(10'3 flops). As we have already remarked, this enormous growth of compu-
tational power has been made possible owing to progress in miniaturization,
which may be quantified empirically in Moore’s law. This law is the result
of a remarkable observation made by Gordon Moore in 1965: the number
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of transistors that may be placed on a single integrated-circuit chip doubles
approximately every 18 — 24 months. This exponential growth has not yet
saturated and Moore’s law is still valid. At the present time the limit is
approximately 10% transistors per chip and the typical size of circuit com-
ponents is of the order of 100 nanometres. Extrapolating Moore’s law, one
would estimate that around the year 2020 we shall reach the atomic size
for storing a single bit of information. At that point, quantum effects will
become unavoidably dominant.

It is clear that, besides quantum effects, other factors could bring
Moore’s law to an end. In the first place, there are economic consider-
ations. Indeed, the cost of building fabrication facilities to manufacture
chips has also increased exponentially with time. Nevertheless, it is im-
portant to understand the ultimate limitations set by quantum mechanics.
Even though we might overcome economic barriers by means of technolog-
ical breakthroughs, quantum physics sets fundamental limitations on the
size of the circuit components. The first question under debate is whether
it would be more convenient to push the silicon-based transistor to its phys-
ical limits or instead to develop alternative devices, such as quantum dots,
single-electron transistors or molecular switches. A common feature of all
these devices is that they are on the nanometre length scale and therefore
quantum effects play a crucial role.

So far, we have talked about quantum switches that could substitute
silicon-based transistors and possibly be connected together to execute clas-
sical algorithms based on Boolean logic. In this perspective, quantum ef-
fects are simply unavoidable corrections that must be taken into account
owing to the nanometre size of the switches. A quantum computer repre-
sents a radically different challenge: the aim is to build a machine based
on quantum logic, that is, it processes the information and performs logic
operations by exploiting the laws of quantum mechanics.

The unit of quantum information is known as a qubit (the quantum
counterpart of the classical bit) and a quantum computer may be viewed
as a many-qubit system. Physically, a qubit is a two-level system, like the
two spin states of a spin-% particle, the vertical and horizontal polarization
states of a single photon or the ground and excited states of an atom. A
quantum computer is a system of many qubits, whose evolution can be
controlled, and a quantum computation is a unitary transformation that
acts on the many-qubit state describing the quantum computer.

The power of quantum computers is due to typical quantum phenomena,
such as the superposition of quantum states and entanglement. There is an
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inherent quantum parallelism associated with the superposition principle.
In simple terms, a quantum computer can process a large number of classical
inputs in a single run. On the other hand, this implies a large number of
possible outputs. It is the task of quantum algorithms, which are based
on quantum logic, to exploit the inherent quantum parallelism of quantum
mechanics to highlight the desired output. In short, to be useful, quantum
computers require the development of appropriate quantum software, that
is, of efficient quantum algorithms.

In the 1980’s Feynman suggested that a quantum computer based on
quantum logic would be ideal for simulating quantum-mechanical systems
and his ideas have spawned an active area of research in physics. It is
also remarkable that quantum mechanics can help in the solution of basic
problems of computer science. In 1994, Peter Shor proposed a quantum
algorithm that efficiently solves the prime-factorization problem: given a
composite integer, find its prime factors. This is a central problem in com-
puter science and it is conjectured, though not proven, that for a classical
computer it is computationally difficult to find the prime factors. Shor’s al-
gorithm efficiently solves the integer factorization problem and therefore it
provides an exponential improvement in speed with respect to any known
classical algorithm. It is worth mentioning here that there are crypto-
graphic systems, such as RSA, that are used extensively today and that are
based on the conjecture that no efficient algorithms exist for solving the
prime factorization problem. Hence, Shor’s algorithm, if implemented on
a large-scale quantum computer, would break the RSA cryptosystem. Lov
Grover has shown that quantum mechanics can also be useful for solving
the problem of searching for a marked item in an unstructured database.
In this case, the gain with respect to classical computation is quadratic.

Another interesting aspect of the quantum computer is that, in princi-
ple, it avoids dissipation. Present day classical computers, which are based
on irreversible logic operations (gates), are intrinsically dissipative. The
minimum energy requirements for irreversible computation are set by Lan-
dauer’s principle: each time a single bit of information is erased, the amount
of energy dissipated into the environment is at least kg7 In2, where kg is
Boltzmann’s constant and 7' the temperature of the environment surround-
ing the computer. Each irreversible classical gate must dissipate at least
this amount of energy (in practice, present-day computers dissipate more by
orders of magnitude). In contrast, quantum evolution is unitary and thus
quantum logic gates must be reversible. Therefore, at least in principle,
there is no energy dissipation during a quantum computer run.



