

ADVANCES IN FREE-RADICAL CHEMISTRY

Volume 6

Edited by

G. H. Williams

Bedford College (University of London), UK

LONDON · PHILADELPHIA · RHEINE

Heyden & Son Ltd, Spectrum House, Hillview Gardens, London NW4 2JQ, UK Heyden & Son Inc., 247 South 41st Street, Philadelphia, PA 19104, USA Heyden & Son GmbH, Münsterstrasse 22, 4440 Rheine, West Germany

Advances in free radical chemistry.

Vol. 6

- 1. Radicals (Chemistry)
- I. Williams, Gareth Howel

541'.224 QD471 80-49994

ISBN 0-85501-469-5

© Heyden & Son Ltd, 1980

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Heyden & Son Ltd.

Printed in Great Britain by Spottiswoode Ballantyne Ltd, Colchester and London

PREFACE

This volume is the first to be produced by the new publishers, Heyden & Son, and in preparing it, the policies followed in the previous volumes in this series have been continued. Since Volume 5 appeared in 1975, free-radical chemistry has advanced rapidly on several fronts, and in this new volume the review literature is brought up to date on several aspects of this branch of chemistry. It is a particular pleasure to welcome an article by Drs R. Kh. Freidlina and A. B. Terent'ev on radical rearrangements, and it is fascinating to observe the progress which has been made in this field since Dr Freidlina herself reviewed it in the first volume of this series. Dr F. Minisci has, in recent years, shown in a series of distinguished papers how polar effects can be used to effect great improvements in synthetic procedures based on free-radical reactions, particularly in respect of their selectivity. The chapter by Dr Minisci and A. Citterio is therefore timely. The contributions of Professor Lord Tedder and Dr J. C. Walton in the field of homolytic halogenation, of Professor J. I. G. Cadogan in solving the historic problems associated with the chemistry of acylarylnitrosamines, and of Dr B. P. Roberts in the free radical chemistry of phosphorus, are well known, and articles from them are therefore most welcome. Literature is covered in this volume generally up to late 1978. As in previous volumes, comprehensive author and subject indexes are provided.

December, 1979

G. H. WILLIAMS Bedford College, London

LIST OF CONTRIBUTORS

- CADOGAN, J. I. G., Department of Chemistry, University of Edinburgh, Edinburgh EH8 9YL, UK (p. 185).
- CITTERIO, A., Istituto di Chimica del Politecnico, Milan, Italy (p. 65).
- FREIDLINA, R. Kh., The Institute of Organo-Element Compounds of the USSR Academy of Sciences, Moscow 117813, Vavilov St., 28, USSR (p. 1).
- MINISCI, F., Istituto di Chimica del Politecnico, Milan, Italy (p. 65).
- ROBERTS, B. P., Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1 0AJ, UK (p. 225).
- TEDDER, J. M., University of St. Andrews, St. Andrews, Fife, UK (p. 155).
- TERENT'EV, A. B., The Institute of Organo-Element Compounds of the USSR Academy of Sciences, Moscow 117813, Vavilov St., 28, USSR (p. 1).
- WALTON, J. C., University of St. Andrews, St. Andrews, Fife, UK (p. 155).

CONTENTS

Preface	vii						
List of Contributors	ix						
Rearrangement of Short-lived Radicals in the Liquid Phase	1						
R. Kh. Freidlina and A. B. Terent'ev							
List of Contributors Rearrangement of Short-lived Radicals in the Liquid Phase							
Francesco Minisci and Attilio Citterio							
 General Concepts Free-Radical Aliphatic Substitutions Free-Radical Aromatic Substitutions Free-Radical Addition to Olefins Miscellaneous Polar Effects and the Reactivity-Selectivity Relationship 	65 68 88 115 125 134 136						
Rearrangement of Short-lived Radicals in the Liquid Phase R. Kh. Freidlina and A. B. Terent'ev 1. Introduction 2. Rearrangement of Radicals Involving Hydrogen Shift 3. Rearrangement of Radicals Involving Halogen Shift 4. Rearrangement of Radicals Involving Migration of Aryl Groups 5. Rearrangement of Radicals Involving Shift of Organoelement Groups 6. Radicalotropy 7. On the Mechanism and General Patterns of Liquid Phase Rearrangement of Unstable Radicals References Polar Effects in Free-Radical Reactions in Synthetic Chemistry Francesco Minisci and Attilio Citterio 1. Introduction 2. General Concepts 3. Free-Radical Aliphatic Substitutions 4. Free-Radical Addition to Olefins 6. Miscellaneous 7. Polar Effects and the Reactivity—Selectivity Relationship References The Halogenation of the Cycloalkanes and their Derivatives John M. Tedder and John C. Walton 1. Introduction 2. The Formation and Reactivity of the Cycloalkyl Radicals 3. The Mechanism of the Halogenation of Cycloalkanes 4. The Halogenation of Cyclopropane and its Derivatives 5. Directive Effects in the Liquid Phase Chlorination of Substituted Cycloalkanes 6. Directive Effects in the Liquid Phase Chlorination of Substituted Cycloalkanes 6. Directive Effects in the Liquid Phase Chlorination of Substituted Cycloalkanes 6. Directive Effects in the Liquid Phase Chlorination of Substituted Cycloalkanes 6. Directive Effects in the Liquid Phase Chlorination of Substituted Cycloalkanes 6. Directive Effects in the Liquid Phase Chlorination of Substituted Cycloalkanes 6. Directive Effects in the Liquid Phase Chlorination of Substituted Cycloalkanes 6. Directive Effects in the Liquid Phase Chlorination of Substituted Cycloalkanes							
John M. Tedder and John C. Walton							
 The Formation and Reactivity of the Cycloalkyl Radicals The Mechanism of the Halogenation of Cycloalkanes The Halogenation of Cyclopropane and its Derivatives Directive Effects in the Gas Phase Chlorination of the Substituted Cycloalkanes Directive Effects in the Liquid Phase Chlorination of Substituted Cycloalkanes 	155 155 161 164 169 171						

vi	CONTENTS

	The Stereochemistry of the Halogenation of the Cycloalkanes Conclusions References	175 181 182
R	he Mechanistic Role of Radicals, Ions, and Arynes in eactions of AcylaryInitrosamines I. G. Cadogan	185
2. 3.	Introduction Reactions of N-Nitrosoacetanilide in Aromatic Solvents Reactions of N-Nitrosoacetanilide in Polyhalogenomethanes Summary References	185 186 214 221 221
	he Chemistry of Phosphoranyl Radicals	225
2. 3. 4. 5.	Introduction Formation of Phosphoranyl Radicals Structures of Phosphoranyl Radicals Stereochemical Non-Rigidity of Phosphoranyl Radicals Fragmentation of Phosphoranyl Radicals Reactions of Phosphoranyl Radicals References	225 226 238 249 261 278 284
Α	uthor Index	291
S	ubject Index	315

REARRANGEMENT OF SHORT-LIVED RADICALS IN THE LIQUID PHASE

R. Kh. Freidlina and A. B. Terent'ev

The Institute of Organo-Element Compounds of the USSR Academy of Sciences, Moscow 117813, Vavilov St., 28, USSR

1. INTRODUCTION

The study of radical rearrangements in the liquid phase is a rapidly developing branch of free radical chemistry, as may be seen from the increased number of review papers on the subject.¹⁻⁹ Nevertheless even in the most recent reviews,^{1,2} the authors claim radical rearrangements to be far less frequent than rearrangements of carbonium ions. As Professor J. M. Tedder pertinently remarked in the Introduction to the monograph,¹ 'The study of free radicals is the Cinderella of organic chemistry', and further: 'In the majority of textbooks on organic chemistry free radical reactions are treated as a special and rather unusual class of reactions despite the fact that in industry and possibly also in nature, one-electron transfers are more common than those involving electron pairs'. No wonder then that radical rearrangements share the fortunes of other topics in radical chemistry. In our view, the ability to rearrange is a general property of radicals, like their ability to recombine, fragment, disproportionate, etc.

The present work covers the period 1965 to 1977. Earlier papers are only included when essential to arguing. Like our previous review,⁵ this one is limited to rearrangements proper involving intraradical shifts of atoms or groups of atoms, which may schematically be written as

During the past years much work has been done on rearrangements of familiar types; on the other hand, more or less conclusive evidence has been presented of certain novel rearrangement processes such as reversible radical isomerization which we call radicalotropy, rearrangements of organoelement radicals involving shifts of R₃Si- and R₃Ge-groups, 1,5 and 1,6 H-shifts in vinyl radicals, 1,2 Cl-shifts in monochlorohydrocarbon radicals, 1,2 Cl-shifts in polymerization of polyhalopropylenes. The field of telomerization reactions involving 1,3 and 1,5 H-shifts and of reactions involving 1,2 Br- and RS-group shifts has been broadened essentially. The section 'Unusual Rearrangements' (p. 11) includes data on

rearrangements of more stable radicals into less stable ones. Important results deepening our understanding of the phenomenon have been obtained during the period in question. Thus, the radical mechanism has been proved rigorously for a large number of reactions involving radical rearrangements by the ESR and ESR spin trapping techniques. The EPR data on 1,2 Cl-shift is discussed in a separate section. Many important results have been obtained in the studies of rearrangements of optically active compounds and of labelled compounds.

2. REARRANGEMENT OF RADICALS INVOLVING HYDROGEN SHIFT

Among rearrangements of various types, those involving hydrogen shifts hold a prominent position which depends not only on their diversity and frequency of occurrence but, in the first place, on their significance for understanding of various important processes such as radical substitution, oxidation, reduction, addition, telomerization and polymerization of olefinic compounds, etc. Data on isomerization of alkyl radicals in the gas phase is given in the review. 10 Rearrangements of biradicals via 1,2 migration of hydrogen or methyl groups have been described; 11 these reactions are not considered here. The mechanism of liquid-phase reactions involving H-shift in monoradicals, of course, differs from that of the aforementioned processes and of rearrangements involving transfer of atoms or groups bearing lone pairs or having vacant d-orbitals or π -bonds. This may, in particular, be seen from the fact that 1,2 H-shifts (supposing transitions of this type are possible after all) go only with difficulty. H-Shift rearrangements are known which proceed by migration of hydrogen from carbon to non-adjacent carbon, oxygen, or nitrogen atoms bearing unpaired electrons and from one heteroatom to another. The literature data on H-shifts in radicals is summarized in Table 1. Below, we shall only briefly touch on the most interesting points.

2.1. 1,2, 1,3, and 1,4 Hydrogen Shift

Only few examples of rearrangements of these types involving hydrogen transfer from one carbon atom to another or across chains containing heteroatoms are known. These are included in Table 1 under Nos 1–19. The most typical processes are those involving 1,5 or, less frequently, 1,6 H-shifts (see below). It should be noted that the possibility of 1,2 H-shift in the liquid phase has not been proved rigorously thus far.^{2,5}

This transition has been claimed to be symmetry forbidden¹² in agreement with the Woodward-Hoffman rules. According to Dewar and Kirschner,¹³ however, the latter are inapplicable to radical reactions. There seems to be no theoretical objection to the possibility of 1,2 H-shift in radicals, so works suggesting this mechanism do appear from time to time (Table 1, Nos 1, 2). The authors themselves, however, note that their interpretations lack unambiguity.^{14,15}

Only during the last few years, a significant number of reactions have been shown to follow the 1,3 H-shift mechanism. These are, in particular,

TABLE 1 Rearrangement of radicals involving hydrogen shift

	£	Structure of radicals	radicals	F	
No.	Keagents, reaction conditions	Unrearranged	Rearranged	I ype of migration	Ref.
		1. 1,2-,1,3-,1,4-Hydrogen shift	-Hydrogen shift		
1 (C	(CH ₃) ₂ CHCH ₂ Br, hv, -196°C	(CH ₃) ₂ CH¢H ₂	(СН₃),ССН₃	1,2 C-C	14
2 (C	H ₃) ₂ CHCH ₂ Br, C ₆ H ₅	(CH ₃),CHĊH,	(СН,),ССН,	1,2 C-C	15
3 C	H,NO, C,H,NHOH	C,H,NHO	C,H,NOH	1,2 N-O	16
4 (a)	4 (a) V(O)(OCH ₃)(hinoxalil)	$RCH_2\dot{O}$ (R = H, CH ₃)	кснон	1,2 C-0	17a
9	CH3CH200H, Ti ¹¹¹		,		176
5 [R(5 $[RCO_2]_2$, $R = CH_3CH_2CD_2$	$CH_3CH_2\dot{C}D_2$	ĊH,CH,CD,H	1,3 C-C	18, 19
Ä	= o-CH ₃ C ₆ H ₄	o-CH3C,H;	C,H,ČH,	1,3 C-C	20
6 Br	CH ₂ (CH ₂) ₂ CO ₂ CH ₃ ,	ĊH2CH2CH2CO2CH3	CH_3CH_2 ĆH CO_2 CH,	1,3 C-C	21
0	,H ₅),SiH, RO				
7 C	7 CH ₂ XCO ₂ R, CH ₂ =CHCH ₃ , R'O	$CH_3CHCH_2CH(X)CO_2R$	CH3CH2CH2C(X)CO2R	1,3 C-C	8, 22
% CF	I_2CI_2 , $CH_2=CH_2$, RO	CHCl,CH,CH,	ĊСI,СН,СН,	1,3 C-C	23
7	·	oĹ	j'		
), HO₂CC≡CCO₂H, HO —0	СНС(СО ₂ Н)=ССО ₂ Н	$C-C(CO_2H)=CHCO_2H$	1,3 C–C	24
		ÇH,C,H,	ÇHC,H,		
10 CE	10 CH ₃ COCH=CHCO ₂ C ₂ H ₅ , C ₆ H ₅ C˙H ₂	CH,COCHCHCO ₂ C ₂ H,	сн,сосн,снсо,с,н,	1,3 C-C	25
11 CE	11 CH ₂ =C(CH ₃)CO ₂ H, RC ₆ H ₄ CH ₃ ,	RC ₆ H ₄ CH ₂ CH ₂ C(CH ₃)CO ₂ H	RC,H4CHCH2CH(CH3)CO2H	1,3 C-C	26
12 R'C	CH,CH,CH(R)OOH	R'CH,CH,CH,CH(R)OO	R'CH-CH-CH-C'R)OOH	130-0	4
13 HC	13 HO ₂ CC=CCO ₂ H, HO	HOC(CO,H)=CCO,H	O=C(CO,H)CHCO,H	1,3 O-C	24
14 Ar.	14 Arno, C ₆ H ₃ ČH ₂	ArNOCH2C,H5	Arnhochc, H,	1,3 C-N	27
	×(*	*[
15 +	Br, (CH ₃) ₃ Šn		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1,4 C-C	28
	X	χ_{CH_3}	$\chi_{ ext{CH}_2}$		

TABLE 1—continued

Q	- Common of the	Structure of radicals	cals	Tyne of	
No. reaction	reaction conditions	Unrearranged	Rearranged	migration	Ref.
16 BrCH2CH2CH3CH2CO2CH3	н,сн,со,сн,	с҅н₂сн₂сн₂со₂сн₃	сн,сн,снсо,сн,	1,4 C-C	21
(C,H ₅) ₃ SiH, R 17 CCl ₃ CH ₂ CH ₂	$(C_2H_2)_3$ MH, RO 17 CCI,CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CI	$\dot{CCl}_2(CH_2)_2CH_2(CH_2)_3Cl$	$CHCl_2(CH_2)_2$ Č $H(CH_2)_3$ Cl	1,4 C-C	29
re(CU) ₃ , 1-C ₃ H ₂ OH 18 R'CH ₂ CH ₂ CH ₂ CH(R)OOH OH OH	,4,0H H ₂ CH(R)OOH	R'CH ₂ CH ₂ CH ₂ CH(R)OÔ OH Ô	R'CH ₂ CH ₂ CHCH(R)OOH Ò OH	1,4 C-0	4
1 11	-, PbO ₂	‡	‡	1,4 0-0	30
20 [C ₆ H ₃ (CH ₂) ₅ CO ₂] ₂ 21 RCH ₂ (CH ₂) ₄ CH ₂ CO ₃ H	20 ₂], 2H,CO ₃ H	2. 1,5- and 1,6-Hydrogen shift in C-centred radicals C ₆ H ₅ CH ₂ (CH ₂),CH ₂ RCH ₂ (CH ₂),CH ₂ RCH ₂ (CH ₂),CH ₂ RCH ₂ (CH ₂),CH ₂	ured radicals C,H,CH(CH ₂),CH, RCH,CH(CH ₂),CH,	1,5 C-C 1,5 C-C	31 32–34
$K = CH_3 - C_7H_{15}$ 22 $CH_3 (CH_2)_5 CH_2 COOH,$	н ₁₅ 1 ₂ СООН,	CH ₃ (CH ₂),CH ₂	CH ₃ CH ₂ CH ₂) ₃ CH ₃	1,5 C-C	35
2.0 (CH, OCH, CH, CH, CH, CC 2.1 (CH, O, CCH, (CH,), CH, CC 2.4 BrCH, (CH,), CH = CH, (C, 2.5 BrCH, (CH,), CH, CO, CH,), CH, CO, CH,), CH, CO, CH,)	5,0§; Ag; Cu". 23 [CH ₃ O ₂ CCH ₂ (CH ₃) ₃ CH ₂ CO ₂] ₂ 24 BrCH ₂ (CH ₃) ₄ CH=CH ₂ , (C ₄ H ₃) ₃ Sn 25 BrCH ₂ (CH ₂) ₃ CH ₂ CO ₂ CH ₃ ,	ÇH,O,CCH,(CH,),ĊH, ÇH,(CH,),CH=CH, ĊH,(CH,),CH,CO,CH,	CH ₃ O ₂ CĊH(CH ₃),CH ₃ CH ₃ (CH ₂),ĊHCH=CH ₂ CH ₃ (CH ₂),ĊHCO ₂ CH ₃	1,5 C-C 1,5 C-C 1,5 C-C	36 37 21
(C ₂ H ₃) ₃ SiH, RO 26 BrCH ₂ (CH ₂) ₄ CH ₂ CO (C,H ₂),SiH, RÔ	to CH₂CO₂CH₃, tổ	ĊH ₂ (CH ₂),CH ₂ CO ₂ CH ₃	CH ₃ (CH ₂),¢HCO ₂ CH ₃	1,6 C-C	21
$27\left\langle \right\rangle$, CH ₂	, CH ₂ =CH ₂ , RÔ	CH,CH,CH,CH,	CH2CH2CH3	1,5 C-C	38,8
28 RCH ₂ CO ₂ R', CH ₂ = $R = H, CH_3, C_2H_3, C$	CH ₂ =CH ₂ , R"Ó, [y- ⁶⁰ Co] C ₂ H ₃ , C ₄ H ₉ , CN, CO ₂ R', CI	'(CH ₂ CH ₂) ₂ CH(R)CO ₂ R'	H(CH ₂ CH ₂);CRCO ₂ R′	1,5 C-C	8, 39, 40a, b
$R' = H, CH_3$ 29 RCH ₂ CN, CF	$K' = H, CH_3$ 29 RCH ₂ CN, CH ₂ =CH ₂ , R'Ô, [½ ⁶⁰ Co]	·(CH ₂ CH ₂) ₂ CH(R)CN	$H(CH_2CH_2)_2\dot{C}(R)CN$	1,5 C-C	∞

NEANNA	MGEINE	IN I	JF 311	ON I-	IVED	1170	NOALO			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
8 8, 41a, b	8 42a, b	∞	4 4 8 4	45 29	46	47	48	49	50 51	52	53, 54	55
1,5 C—C 1,5 C—C	1,6 C–C 1,5 C–C	1,5 C-C	1,5 C-C 1,5 C-C	1,6 C—C 1,5 C—C	1,6 C-C 1,5 C-C	1,8 C-C	1,5 C-C 1,6 C-C	1,5 C-C	1,5 C-C 1,5 C-C	1,5 C-C	1,5 C–C	1,5 C-C
H(CH,CH,),Ċ(R)OH RCOĊH(CH,CH,),H	CH ₁ (CH ₂ CH ₂),CHCO ₂ CH ₃ RĊX(CF ₂ CFY) ₂ H	H[CH(CH ₃)CH ₂] ₂ CXCO ₂ R	H[(CH ₃) ₂ CCH ₂] ₂ CCICO ₂ R (CH ₃) ₃ N(CH ₃),ĈHC ₂ H,	CH2CH=CHC(0)OCH3 CHCl2(CH2)3CHCH2CH2Cl	CHCI ₂ (CH ₂), CHCH ₂ CI CHCI ₂ (CH ₂), CHCH ₂ CH ₃	CHCl ₂ (CH ₂) ₃ CHCl CHCl ₂ (CH ₂) ₃ CHCl	CHCI,CH,CCI,CH,ĈHCI H(CCI,CH,),CCI,ĈHCH,CI	CHCI,CH(CCI,)(CH,),CHCI	C,H,C(O)N(CH,R)ĊHR o-RĊHCH,XC,H,		CCl ₃ CH=CH(CH ₂) ₃ CHR	R'R"CCO2C(CH3)2CH=CHCCl3
$(CH_2CH_2)_2CH(R)OH$ $RCOCH_2(CH_2CH_2)_2$	CH ₂ (CH ₂ CH ₂) ₂ CH ₂ CO ₂ CH ₃ RCHX(CF ₂ CFY) ₂	$^{\circ}$ [CH(CH ₃)CH ₂] $_{2}$ CHXCO $_{2}$ R	[(CH ₃),CCH ₂],CHClCO ₂ R (CH ₃),NCH,CH(CH ₃),CH,	CH3CH=CHC(0)OĆH2 CCI2(CH2)5CH2CI	ĊCl₂(CH₂)₅CH₃	CCl ₂ (CH ₂),CH ₂ Cl	ĊCI,CH,CCI,CH,CH,CI (CCI,CH,),CCI,CH,CI	ċċı¿ċ́H(ċċi₃)(ċ́H₂)¿ċH₂ċı	o-(RCH ₂₎₂ NC(O)C ₆ H ₄ o-RC ₂ H ₄ XC ₆ H ₄		$CCl_3CH=\mathring{C}(CH_2)_3CH_2R$	R'R"CHCO2C(CH3)2C=CHCC13
30 RCH ₂ OH, CH ₂ =CH ₂ , R'Ô 31 RCOCH ₃ , CH ₂ =CH ₂ , R'Ô, [Mn(OCOCH ₃) ₃ , p ⁶⁰ Co]	32 HCOOCH, CH ₂ =CH, RÔ, [y-60Co] 33 RCH ₂ X, CF ₂ =CFY, R'Ô; X = Alt. OH: Y = F. Cl	34 CH_2XCO_2R , $CH_2=CH-CH_3$, $R'O_1 X - H$ CI CH	35 CH ₂ CICO ₂ R, (CH ₃) ₂ C=CH ₂ , R'Ò 36 CH ₂ =CH(CH ₃), CH ₃ , (CH ₃), N	37 CH ₃ CH=CHCO ₂ CH ₃ , RO 38 CCI ₃ (CH ₂) ₅ CH ₂ CI,	Fe(CO) ₃ , i-C ₃ H ₇ OH 39 CCl ₃ (CH ₂) ₅ CH ₃ , Fe(CO) ₅ ,	40 CCl ₃ (CH ₂) ₃ CH ₂ Cl, Fe(CO) ₅	i-C,H,OH[CH,OH, HCON(CH,),] 41 CCI,CH,CH,CI, CH,=CCI,, Fe(CO),, i-C,H,OH	42 $CCl_2 = CH(CH_2)_1CH_2CI$,	43 o-(RCH ₂) ₂ NC(O)C ₆ H ₄ N ₂ X; Cu ₂ Cl ₂ 44 o-RC ₂ H ₄ XC ₆ H ₄ N ₂ ² Ti ^{III} , X = 0, CH ₂ R = H, COO ⁻	45 o-NH ₂ C ₆ H ₄ -N , HNO ₂ 0	46 CH=C(CH ₂) ₃ CH ₂ R, CCl ₃ X, X-H Cl Br. P-H CH C	$A = \Pi$, CI , ΩI ; $R = \Pi$, CHI_3 , $C_2\Pi_3$ 47 R'R"CHCO ₂ C(CH ₃) ₂ C=CH, CCI ₄

TABLE 1—continued

	Reavents	Structure of radicals	icals	J	
No.	reaction conditions	Unrearranged	Rearranged	migration	Ref.
48 HO ₂ (49 HO ₂	48 HO ₂ CC≡CCO ₂ H; (C ₂ H ₃),O; ÒH 49 HO ₂ CC≡CCO ₂ H; CH ₂ (OCH ₃); ÒH	$CH_3CH_2OCH(CH_3)C(CO_2H) = CCO_2H$ $CH_3OCH_2OCH_2C(CO_2H) = CCO_2H$ $CH_3OCH(OCH_3)C(CO_2H) = CCO_2H$	CH ₃ CHOCH(CH ₃)C(CO ₂ H)=CHCO ₂ H 1,5 C-C CH ₃ OCHOCH ₂ C(CO ₂ H)=CHCO ₂ H 1,5 C-C CH ₂ OCH(OCH ₃)C(CO ₂ H)=CHCO ₂ H 1,5 C-C	1 1,5 C-C 1,5 C-C 1,5 C-C	24
80	о, но₂сс≡ссо₂н, о̀н	$H \xrightarrow{\text{H}} C(\text{CO}_2 H) = \dot{C}\text{CO}_2 H$	$\cdot \underbrace{\begin{pmatrix} H \\ C(CO_2H) = CHCO_2H \end{pmatrix}}_{\bullet}$	1,5 C-C	24
			O=CHCH2CH2CHC(CO2H)=CHCO2H	н	
51 (CH ₃)	51 (CH ₃) ₂ C=CHCH ₂ CH ₂ CH(CH ₃)CH=CH ₂ ,	5-	unidentified	1,6 C–C	99
52	, CCl_4 , CCl_3Br , $(C_nF_{2n+1}I)$	$\bigcap_{CCl_3,\; (C_nF_{2n+1})}$	$\cdot \bigcirc CCl_3, (C_nF_{2n+1})$	1,5 C-C	57–59
83 (NC ₆ H ₁₁ , Fe ¹¹	ĊH ₂ (CH ₂),CONHC,H ₁₁	CH ₃ (CH ₂) ₃ CHCONHC ₆ H ₁₁	1,5 C-C	09
⁵	X, Rổ	CH,		1,5 C-C	61
55 $(CH_2)_n$ $n = 0, 1, 2$	$(CH_2)_n$, $CH_2=CH_2$, $R\dot{O}$ n=0,1,2	$(CH_2)_n$ $(CH_2)_3$ CH_2	$(CH_2)_n$	1,5 C-C	62

63	64, 65 66, 67	89	69	70, 71	20	72	73	74
1,5 C-0 1,5 C-0	1,5 C-0 1,5 C-0 1,5 C-0	1,5 C-0	1,5 C-0	1,6 C-0	1,5 C-0	1,5 C-0	1,5 C-0	1,5 C-0
¹ / ₂ С(СН ₃)2ОН Н ₃ С(СН ₃)2ОН Н 3 С(СН 3 ОН	RČH(CH ₂) ₂ CH(OH)R"	сн,сн(сн,),с(сн,),он	CH₃ĊH(CH₂)₂C [⊘] OH	ĊH, CH,	$\bigvee_{CH_2} CO_2H$	С,н,	. С. С. С. С. О. О.	R
3. 1,5- and 1,6-Hydrogen shift in O-centred radicals CH ₃ CH ₂ (CH ₃) ₂ C(CH ₃) ₂ Ò CH ₃ CH(CH ₃ CH ₂ (CH ₃) ₂ C(CH ₃) ₃ Ò RCH ₂ CH(CH ₃ CH ₂ CH(CH ₃ CH ₃ CH ₃ C) RCH ₂ CH(CH ₃ CH ₃ CH ₃ C)	RCH ₂ (CH ₂) ₂ CH ₂ Ò R'CH ₂ (CH ₂) ₂ CH(Ö)R"	$\mathrm{CH_3CH_2(CH_3)_2C(CH_3)_2}$	$CH_3CH_2(CH_2)_2C < OH$	CH ₃	CO;	$\sum_{Ch_2CH_2CH_2C(0)}$	н Ссн,о	H, 1,4 R
56 $RCH_2CH_2(CH_2)_2C(CH_3)_2OCI$, $R = H$ $R = CH_3$, C_6H_5	57 RCH ₂ (CH ₂) ₂ CH ₂ ONO, hv 58 R'CH ₂ CH ₂ CH ₂ CH(OH)R", ps/OCOCH)	59 CH ₃ CH ₂ (CH ₃) ₂ C(CH ₃) ₂ OOH, Cu', Fe ^{II}	60 CH ₃ CH ₂ (CH ₂) ₂ CO ₂ H, Cl ₂ , HCl, hv	61 CH ₃ CH ₃ OH, PbO ₂	62 [o-CH ₃ C ₆ H ₄ CO ₂] ₂	63 $\sum_{(CH_2)_3C(O)00C(CH_3)_3}$	64 CH ₂ OH, Pb(OCOCH ₃) ₄	65 R Pb(OCOCH ₃) ₄

TABLE 1—continued

8							R. KH.	FREIDLINA	AND A. I	J. IENEN	IEV	
	Ref.		67,75		75		92		77		24	78, 79
Type of	migration		1,5 C-0		1,5 C-O		1,5 C-O	1,6 C-O	1,5 C-O	1,6 C-O	1,5 0–C 1,5 0–C	1,5 O-C
of radicals	Rearranged	СН2ОН		CH ₂ CR'R"OH	7		$H \xrightarrow{C_6 H_5} OH$	H. OH.	CH ₃	CH ₃	$\dot{O}CH = C(CO_2H)CH = CHCO_2H$ $\dot{O}C(CO_2H) = CHCH = CHCO_2H$	$CH_3CH_2\dot{C}HC(R)=0$
Structure of radicals	Unrearranged	H CH2		CH ₂ CR'R"Ô			$H \xrightarrow{C_6 H_5} \mathring{\mathbf{o}}$		Ó CH,		HOCH=C(CO ₂ H)CH=CCO ₂ H HOC(CO ₂ H)=CHCH=CCO ₂ H	$\dot{C}H_2CH_2CH=C(R)OH$
į	Reagents, No. reaction conditions	н СН,ОН	66 cis , Pb(OCOCH ₃) ₄	CH ₂ CR'R"OH	\	$R'R'' = H, CH_3, Pb(OCOCH_3)_4$	68 H OH OH , Pb(OCOCH ₃) ₄ C _{C₆H₃}		69 CH ₃ OCI, $h\nu$		70 HC≡CCO ₂ H, HÔ	71 \longrightarrow CH(R)OH, R'Ó, hv

	RI	EARRANGE	MENT OF	SHOR	T-LIVED	RADI	CALS IN	THE L	IQUID PHAS	E	9)
08		81, 82, 83	84,85	98	87		88	82 89, 90	89 91	82, 92	93	94
1,5 0↔0		1,5 C-N 1,5 C-N 1,6 C-N	1,5 C-N	1,5 C-N	1,5 C-N	1,6 C-N	1,5 C-N	1,5 C-N 1,6 C-N	1,5 C-N 1,5 C-N	1,5 C-N 1,6 C-N	1,5 $(n = 1)$ 1,6 $(n = 2)$	1,5 0-N
$(CH_3)_3CN(OH)CON(\mathring{O})C(CH_3)_3$	centred radicals	CH3ĊH(CH2)3 ^h H2R' RCH2ĊH(CH2)3 ^h H2R' RĊHCH2(CH2)3 ^h H2R'	$\bigcup_{+}^{C_2H_5}$	$\dot{c}_{H_2(CH_2)_3}^{+}M_{2}C_{4}H_{9}$	$RCH_2\dot{C}H - \bigwedge_{i=1}^{+} \dot{N}H_2$	RCHCH ₂	(C ₄ H ₃) ₂ [†] CH ₂ CH ₂ CH ₂ CH ₂ H	RCH,ĊHCH,CH,C(O)ŮHR' RČHCH,CH,CH,C(O)NHR'	CH ₃ CHCH ₂ CH ₂ C(O)NHR' (CH ₃) ₃ CCH ₃ C(O) CH ₂ (CH ₃) ₂ CCH ₂ (CH ₃) ₂ C	RCH ₂ CH(CH ₂) ₂ SO ₂ NHR' RCHCH ₂ (CH ₂) ₂ SO ₂ NHR'	RĊH(CH ₂) _" OP(O)NHR' OCH ₃	o-ÔC ₆ H ₄ C(R)=NH
$(CH_3)_3CN(\mathring{Q})CON(OH)C(CH_3)_3$	4. 1,5- and 1,6-Hydrogen shift in N-centred radicals	CH ₃ CH ₂ (CH ₂) ₃ NHR' RCH ₂ CH ₂ (CH ₂) ₃ NHR'	H NC2H,	CH ₃ (CH ₂) ₃ NHC ₄ H ₉	RCH_2CH_2 NH		(C4H ₉₎₂ NCH ₂ CH ₂ CH ₃	RCH2CH2CH2CH2C(O)NR'	CH ₃ CH ₂ CH ₂ CH ₂ C(O)NR' (CH ₃) ₃ CCH ₂ C(O)——; (CH ₃) ₃ CCH ₂ (CH ₃) ₂ C	$\mathrm{RCH_2CH_2(CH_2)_2SO_2\mathring{N}R'}$	$RCH_2(CH_2)_{\mu}OP(O)\dot{N}R'$ OCH,	o-HOC ₆ H ₄ C(R)=N
72 [(CH ₃) ₃ CN(OH)] ₂ CO, PbO ₂	13 PCH CH (CH) N/B//Ci	$A_{2} = CC_{1} + CC_{1} + CC_{1} + CC_{1} + CC_{2} + CC_{3} + CC_{3} + CC_{4} + CC$	74 N(CI)C ₂ H ₅ , H ₂ SO ₄ , h_V	75 (C_4H_9) ₂ NCI, H_2SO_4 , $\hbar\nu$	76 RCH ₂ CH ₂ \sim N-Cl, H ⁺ , hv R = H CH		77 (C ₄ H ₉₎₃ N–O ⁻ , Fe ¹¹	78 RCH ₂ CH ₂ CH ₂ C(O)N(CI)R', hv	79 RCH ₂ C(O)NBrR', hv R = CH ₃ CH ₂ CH ₂ , R' = H,C(CH ₃) ₃ , R = C(CH ₃) ₃ , R' = C(CH ₃) ₃ ,	80 RCH ₂ CH ₂ (CH ₂) ₂ SO ₂ N(CI)R', hv	81 RCH ₂ (CH ₂) _n OP(O)N(CI)R', $n = 1, 2, h\nu$ OCH ₃	82 o-HOC ₆ H ₄ C(R)=NOH, hv

telomerization⁸ (Table 1, Nos 7, 8), addition to the triple bond $C \equiv C^{24}$ proceeding via vinyl radical intermediates (Nos 9, 13), addition to the double bond^{25,26} followed by fragmentation of rearranged radicals (Nos 10, 11).

Quite recently, the first works on reversible 1,2 and 1,4 H-shifts (Nos 3, 19) have appeared (for details, see Section 6, 'Radicalotropy').

Examples of 1,4 H-shift, which goes to only a negligible extent, still remain exceedingly scarce^{4,28,29} (Nos 15–18).

2.2. 1,5 and 1,6 H-Shifts in C-Centred Radicals

Hydrogen shifts to the fifth and sixth carbon atoms are the best studied paths of radical isomerization. Table 1 provides many examples (Nos 20–55) of quite varied types of chemical reactions involving 1,5 and 1,6 H-shifts.

During recent years, the problem has been studied systematically, using series of radicals of a given sort, in order to determine the extent of rearrangement as depending on various factors (chain length of radicals, competition of chain transfer, rates of competing processes, differences in radical stabilities, etc.).

Hydrogen shift in long-chain radicals

The extent to which rearrangement occurs was studied as depending on the distance between the radical centre and the carbon atom donating hydrogen for the series of radicals.²¹

$$\dot{C}H_2(CH_2)_nCH_2CO_2R$$
 $(n = 1-4)$

(Table 1, Nos 6, 16, 25, 26)

Spin-adducts of both unrearranged $(CH_3O_2CCH_2(CH_2)_nCH_2N(O)Ar)$ and rearranged $CH_3(CH_2)_nCH(CO_2CH_3)N(O)Ar$ radicals $[Ar = (CH_3)_3C_6H_2]$ were identified in the presence of nitrosodurene as spin trap. The ESR signals from the adducts of the 1,3-, 1,4-, 1,5-, and 1,6- rearranged radicals had the intensity ratio 0.03:0.10:1:0.25.

The hydrocarbon radicals $RCH_2CH_2(CH_2)_3\dot{C}H_2$ ($R=CH_3$ to C_7H_{15}) rearrange by both 1,5- and 1,6-mechanisms (Table 1, No. 21), the product ratio depending strongly on the radical R chain length. The relative yield of the rearrangement products (1,5- + 1,6-) varies only insignificantly in going from $R=CH_3$ to $R=C_3H_7$. Further elongation of R (from C_4H_9 to C_7H_{15}), however, leads to an almost twofold decrease of the extent of rearrangement. With radicals $C_{11}-C_{13}$ ($R=C_5H_{11}$ to C_7H_{15}), the analytical data suggest the occurrence of 1,10 and 1,11 H-shifts, though an alternative explanation (successive 1,5 and 1,6 H-shifts in radical 1) is also possible:

