SIXTH EDITION

" THE MeGRAW~HILL CONPANES
FOR DONATION ONLY
NOT FOR RESALE

HIGHER EDUCATION
23-ASA- 006

STEREIEINERES CHACH

Object-Oriented
and Classical
Software
Engineering

Sixth Edition

Stephen R. Schach

Vanderbilt University

% Higher Education

Boston Burr Ridge, IL Dubugue, IA Madison, Wi New York San Francisco St. Louis
Bangkok Bogotd Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

The McGraw-Hill Companies

5 Higher Education

OBJECT-ORIENTED AND CLASSICAL SOFTWARE ENGINEERING. SIXTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY

10020. Copyright © 2005, 2002, 1999, 1996, 1993, 1990 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written consent of The McGraw-Hill Companies, Inc.. including. but not limited to, in any network or other electronic storage or
transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

234567890DOC/DOCOY8T654

ISBN 0-07-286551-2

Publisher: Elizabeth A. Jones

Managing developmental editor: Emilv J. Lupash
Marketing manager: Dawn R. Bercier

Senior project manager: Jane Mohr

Lead production supervisor: Sandy Ludovissy
Lead media project manager: Audrey A. Reiter
Senior coordinator of freclance design: Michelle D. Whitaker
Cover designer: Christopher Reese

Cover image: © Sherman/Getty Images
Compositor: Interactive Composition Corporation
Typeface: 10/12 Times Roman

Printer: R. R. Donnellev Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Schach, Stephen R.
Object-oriented and classical software engineering / Stephen R. Schach. — 6th ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-07-286551-2
1. Software engineering. 2. Object-oriented programming (Computer science). 3. UML (Computer science).
4. C++ (Computer program language). I. Title.

QAT76.758S318 2005

005.1'17—dc22 2003024034
CIP

www.mhhe.com

The following are registered trademarks:

ADF
Analyst/Designer
Ant

Apache

Apple

AS/400

AT&T

Bachman Product Set
Borland

Bugzilla
Capability Maturity Model
ccc

ClearQuest
CMM

Coca-Cola
CORBA

CVS

DB2
e-Components
Emeraude
Enterprise JavaBeans
Excel

Focus

Ford

Foundation
FoxBASE

GCC
Hewlett-Packard
IBM

IMS/360

Java

JBuilder

Linux

Lotus 1-2-3

Lucent Technologies

MacApp

Macintosh

Macintosh Toolbox

MacProject

Microsoft Foundation
Class Library

Motif

MS-DOS

MVS/360

Natural

Netscape

New York Times

Object C

Objective-C

ObjectWindows Library

1-800-flowers.com
Oracle
0S/360
0S/370
OS/VS2
Post-it note
PowerBuilder
Project
PureCoverage
PVCS
QAPartner
Rational

Requisite Pro
Rhapsody

Rose

SilkTest

Software through Pictures
Solaris
SourceSafe
SPARCstation
Sun

Sun Enterprise
Sun Microsystems
Sun ONE Studio
System Architect
Together

UNIX

VAX

Visual Component Library
Visual C++

Visual J++
VM/370

VMS

Wall Street Journal
WebSphere
Win32

Windows 95
Windows 2000
Windows NT

X11

XRunner

Zip disk

ZIP code

Preface

Since the publication of the fifth edition three years ago, the Unified Process has become
widely regarded as the methodology of choice for object-oriented software development.
The Unified Process is based on Booch’s method, Objectory, and OMT. These three older
object-oriented methodologies are now no longer supported by their respective authors.
Accordingly, the major new feature of the sixth edition is the inclusion of the Unified
Process. In particular, the two running case studies are developed using the Unified
Process, so the student is exposed to both the theory and the practice of the Unified Process.

Other Key Features of the Sixth Edition

Chapter 1 has been totally revised. In particular, the strengths of the object-oriented par-
adigm are analyzed in greater depth. Also, I have introduced the new definition of main-
tenance adopted by ISO, [EC, IEEE, and EIA.

The order of Chapters 2 and 3 has been reversed to introduce the evolution-tree life-
cycle model and the iterative-and-incremental life-cycle model as early as possible.
However, as with all previous editions, numerous other life-cycle models are presented,
compared, and contrasted.

In Chapter 3, “The Software Process,” the workflows (activities) and phases of the Uni-
fied Process are introduced, and the need for two-dimensional life-cycle models is
explained.

Chapters 4 through 9 have been updated. For example, component-based software engi-
neering is introduced in Chapter 8, and the new IEEE standard for software project man-
agement plans is presented in Chapter 9. An example of a plan that conforms to the new
standard appears in Appendix F.

The material on interoperability has been removed from Chapter 8. In both the fourth
and the fifth editions, these sections became hopelessly out of date during the 6 months
it took to publish the books. In my opinion, the field is moving too fast to be included in
a textbook; an instructor wishing to include interoperability in a software engineering
course should obtain up-to-the-minute material from the Internet.

Chapter 10 (“Requirements”), Chapter 12 (“Object-Oriented Analysis”), and Chapter 13
(“Design”) have undergone major changes to incorporate the workflows (activities) of the
Unified Process. For obvious reasons, Chapter 11 (“Classical Analysis™) has not been
changed.

The material on implementation and integration (Chapters 14 and 15 of the fifth edition)
has been merged into the new Chapter 14, but there is still a clear separation between
implementation and integration.

Chapter 15 is now on post-delivery maintenance.

Chapter 16 is new. The fourth edition was the first software engineering textbook to
utilize the Unified Modeling Language (UML), which was introduced shortly before
that edition was published. Three years later, UML had been formally standardized and

XV

xvi Preface

become so widely used that, in the fifth edition, I continued to employ UML to represent
object-oriented analysis and object-oriented design, as well as in diagrams that depicted
objects and their interrelationships. In both the fourth and fifth editions, [included suf-
ficient material on UML to enable students to do all the exercises, as well as the team-
based term project. However, UML is now such an integral part of software engineering
in general (and the Unified Process in particular) that [have added a final chapter, “More
on UML.” The purpose of Chapter 16 is to provide additional material on UML to pre-
pare the student even more thoroughly for employment in the software industry. This
chapter is of particular use to instructors who utilize this book for the two-semester
software engineering course sequence. In the second semester, in addition to developing
the team-based term project or a capstone project, the student can acquire additional
knowledge of UML, beyond what is needed for this book.

In addition to the two running case studies that are used to illustrate the complete life
cycle, seven mini case studies highlight specific topics, such as the moving target prob-
lem, stepwise refinement, and post-delivery maintenance.

The material on extreme programming (XP) has been expanded. In addition, XP is now
described within the context of agile programming. XP still is controversial, but I feel
that students need to understand the topic so they can decide for themselves whether XP
is merely a current fad or a genuine major breakthrough in software engineering.

Features Retained from the Fifth Edition

The key features of the fifth edition have all been retained.

In all the previous editions, I stressed the importance of documentation, maintenance,
reuse, portability, testing, and CASE tools. In this edition, all these concepts are stressed
equally firmly. It is no use teaching students the latest ideas unless they appreciate the
importance of the basics of software engineering.

As in the fifth edition, particular attention is paid to object-oriented life-cycle mod-
els, object-oriented analysis, object-oriented design, management implications of the
object-oriented paradigm, and the testing and maintenance of object-oriented software.
Metrics for the object-oriented paradigm are also included. In addition, many briefer
references are made to objects, a paragraph or even only a sentence in length. The rea-
son is that the object-oriented paradigm is not concerned just with how the various
phases are performed but with how it permeates the way we think about software engi-
neering. Object technology again pervades this book.

The software process is still the concept that underlies the book as a whole. To con-
trol the process, we have to be able to measure what is happening to the project.
Accordingly, the emphasis on metrics is retained. With regard to process improvement,
the material on the capability maturity model (CMM), ISO/IEC 15504 (SPICE), and
ISO/TEC 12207 has been retained; the people capability maturity model (P-CMM) has
been added to the chapter on teams.

The book is still language independent; the few code examples are presented in C++
and Java, and I have made every effort to smooth over language-dependent details and
ensure that the code examples are equally clear to C++ and Java users. For example,
instead of using cout for C++ output and System.out.printin for Java output, I have

Preface xvii

utilized the pseudocode instruction print. (The one exception is the new case study,
where complete implementation details are given in both C-++ and Java.)

¢ As before, there are two running case studies. The Osbert Oglesby case study from the
fourth edition and the Elevator Problem case study (from previous editions) have been
redeveloped using the Unified Process. As usual, Java and C++ implementations are
available online at www.mhhe.com/engcs/compsci/schach.

* Asin the fifth edition, this book contains over 600 references. I selected current research
papers as well as classic articles and books whose message remains fresh and relevant.
There is no question that software engineering is a rapidly moving field and students there-
fore need to know the latest results and where in the literature to find them. At the same
time, today’s cutting-edge research is based on yesterday’s truths, and [see no reason to
exclude an older reference if'its ideas are as applicable today as they originally were.

¢ With regard to prerequisites, it is assumed that the reader is familiar with one high-level
programming language such as C, C++, Ada, or Java. In addition, the reader is expected
to have taken a course in data structures.

Why the Classical Paradigm Still Is Included

When [started writing the sixth edition, I decided to exclude all mention of the classical
(structured) paradigm. After all, there is now almost unanimous agreement that the object-
oriented paradigm is superior to the classical paradigm. 1 soon discovered, however, that
attempting to eliminate any mention of the classical paradigm was distinctly unwise.

First, it is impossible to appreciate why object-oriented technology is superior to classi-
cal technology without fully understanding the classical approach and how it differs from
the object-oriented approach. For example, the object-oriented paradigm uses an iterative
and incremental life-cycle model. To show why such a life-cycle model is needed, it is
essential to explain in detail the differences between classical life-cycle models like the
waterfall model and the iterative and incremental life-cycle model of the object-oriented
paradigm. Therefore, throughout the book, I have included material on the classical para-
digm so that the student can clearly appreciate the differences between the classical
paradigm and the object-oriented paradigm.

The second reason why I have included both paradigms is that technology transfer is a
slow process. Notwithstanding the impact of Y2K on accelerating the switch to the object-
oriented paradigm, the majority of software organizations still have not yet adopted the
object-oriented paradigm. It therefore is likely that many of the students who use this book
will be employed by organizations that use classical software engineering techniques.
Furthermore, even when an organization uses the object-oriented approach for developing
new software, existing software still has to be maintained, and this legacy software is not
object oriented. Therefore, excluding classical material would be unfair to many of the
students who use this text.

A third reason for including both paradigms is that a student who is employed at an
organization considering making the transition to object-oriented technology will be able
to advise that organization regarding both the strengths and the weaknesses of the new
paradigm. So, as in the previous edition, the classical and object-oriented approaches are
compared, contrasted, and analyzed.

xviii

Preface

How the Sixth Edition Is Organized

Like the fifth edition of this book, the sixth edition is written for both the traditional one-
semester and the newer two-semester software engineering curriculum. In the traditional
one-semester (or one-quarter) course, the instructor has to rush through the theoretical ma-
terial to provide the students the knowledge and skills needed for the term project as soon
as possible. The need for haste is so that the students can commence the term project early
enough to complete it by the end of the semester. To cater to a one-semester, project-based
software engineering course, Part 2 of this book covers the software life cycle, workflow by
workflow, and Part 1 contains the theoretical material needed to understand Part 2. For
example, Part | introduces the reader to CASE, metrics, and testing; each chapter of Part 2
contains a section on CASE tools for that workflow, a section on metrics for that workflow,
and a section on testing during that workflow. Part 1 is kept short to enable the instructor to
start Part 2 relatively early in the semester. Furthermore, the last two chapters of Part 1
(Chapters 8 and 9) may be postponed, then taught in parallel with Part 2. As a result, the
class can begin developing the term project as soon as possible.

We turn now to the two-semester software engineering curriculum. More and more com-
puter science and computer engineering departments are realizing that the overwhelming
preponderance of their graduates find employment as software engineers. As a result, many
colleges and universities have introduced a two-semester (or two-quarter) software engi-
neering sequence. The first course is largely theoretical (but almost always there is a small
project of some sort). The second course comprises a major team-based term project, usu-
ally a capstone project. When the term project is in the second course, there is no need for
the instructor to rush to start Part 2.

Therefore, an instructor teaching a one-semester (or one-quarter) sequence using the sixth
edition covers most of Chapters 1 through 7, then starts Part 2 (Chapters 10 through 16).
Chapters 8 and 9 can then be taught in parallel with Part 2 or at the end of the course while
the students are implementing the term project. When teaching the two-semester sequence,
the chapters of the book are taught in order; the class now is fully prepared for the team-based
term project that they will develop in the following semester.

To ensure that the key software engineering techniques of Part 2 truly are understood,
each is presented twice. First, whenever a technique is introduced, it is illustrated by means
of the elevator problem. The elevator problem is the correct size for the reader to be able to
see the technique applied to a complete problem, and it has enough subtleties to highlight
both the strengths and weaknesses of the technique being taught. Then, the relevant portion
of the Osbert Oglesby case study is presented. This detailed solution provides the second
illustration of each technique.

The Problem Sets

The previous edition had four types of problems. There are now five types of problems. The
new type of problem is the running object-oriented analysis and design projects at the end
of Chapters 10, 12, and 13. These have been included because the only way to learn how
to perform the requirements, analysis, and design workflows is from extensive hands-on
experience.

Preface Xix

Second, the end of each chapter contains a number of exercises intended to highlight key
points. These exercises are self-contained; the technical information for all the exercises
can be found in this book.

Third, there is a software term project. It is designed to be solved by students working in
teams of three, the smallest number of team members that cannot confer over a standard
telephone. The term project comprises 16 separate components, each tied to the relevant
chapter. For example, design is the topic of Chapter 13, so in that chapter the component
of the term project is concerned with software design. By breaking a large project into
smaller, well-defined pieces, the instructor can monitor the progress of the class more
closely. The structure of the term project is such that an instructor may freely apply the
16 components to any other project that he or she chooses.

Because this book is written for use by graduate students as well as upper-class under-
graduates, the fourth type of problem is based on research papers in the software engineer-
ing literature. In each chapter, an important paper has been chosen; wherever possible, a
paper related to object-oriented software engineering has been selected. The student is
asked to read the paper and answer a question relating its contents. Of course, the instruc-
tor is free to assign any other research paper; the For Further Reading section at the end of
each chapter includes a wide variety of relevant papers.

The fifth type of problem relates to the Osbert Oglesby case study. This type of problem
was first introduced in the third edition in response to a number of instructors who feel that
their students learn more by modifying an existing product than by developing a new prod-
uct from scratch. Many senior software engineers in the industry agree with that viewpoint.
Accordingly, each chapter in which the case study is presented has at least three problems
that require the student to modify the case study in some way. For example, in one chapter
the student is asked to redesign the case study using a different design technique from the
one used for the case study. In another chapter, the student is asked what the effect would
have been of performing the steps of the object-oriented analysis in a different order. To
make it easy to modify the source code of the case study, it is available on the World Wide
Web at www.mhhe.com/engcs/compsci/schach. The website also has a complete set
of PowerPoint lecture notes.

The Instructors Solution Manual contains detailed solutions to all the exercises, as well
as to the term project. The Instructor’s Solution Manual is available from McGraw-Hill.

Acknowledgments

I greatly appreciate the constructive criticisms and many helpful suggestions of the
reviewers of the five previous editions, including

Arvin Agah Don Bickerstaff

University of Kansas Eastern Washington University
Kiumi Akingbehin Richard J. Botting

University of Michigan, Dearborn California State University, San
Phil Bernhard Bernardino

Clemson University James Cardow

Dan Berry Air Force Institute of

The Technion Technology

XX

Preface

Betty Cheng

Michigan State University
David Cheriton

Stanford University

Thaddeus R. Crews, Jr.
Western Kentucky University
Buster Dunsmore

Purdue University

Eduardo B. Fernandez
Florida Atlantic University
Michael Godfrey

Cornell University

Bob Goldberg

IBM

Donald Gotterbarn

East Tennessee State University
Scott Hawker

University of Alabama

Thomas B. Horton

Florida Atlantic University
Greg Jones

Utah State University

Peter E. Jones

University of Western Australia
Gail Kaiser

Columbia University
Laxmikant V. Kale

University of Illinois

Helene Kershner

University of Buffalo

Chung Lee

California State Polytechnic, Pomona
Richar A. Lejk

University of North Carolina, Chapel Hill
Bill McCracken

Georgia Institute of Technology

Susan Mengel

Texas Tech University

Everald E. Mills

Seattle University

Fred Mowle

Purdue University

Ron New

Johns Hopkins University
David Notkin

University of Washington

Hal Render

University of Colorado, Colorado Springs
David S. Rosenblum
University of California, Irvine
Shmuel Rotenstreich

George Washington University
Wendel Scarborough

Azusa Pacific University

Bob Schuerman

State College, Pennsylvania
Gerald B. Sheble

lowa State

K. C. Tai

North Carolina State University
Toby Teorey

University of Michigan

Jie We

City University of New York
Laurie Werth

University of Texas, Austin

Lee White

Case Western Reserve University
David Workman

University of Central Florida
George W. Zobrist

University of Missouri, Rolla

In addition, special thanks go to the reviewers of this edition, including

Michael Buckley
State University New York, Buffalo

Catherine Lowry Campbell
New Jersey Institute of Technology

Frances Grodzinsky
Sacred Heart University
Jim Han

Florida Atlantic University

Preface XXi

Werner Krandick David C. Rine

Drexel University George Mason University
Owen Lavin Mansur Samadzadeh
DePaul University Oklahoma State University
Donald Needham John H. Sayler

United States Naval Academy University of Michigan
Andy Podgurski Fred Strauss

Case Western Reserve University Polytechnic University

All the above reviewers, without exception, have made significant contributions. Never-
theless, I am particularly grateful to Owen Lavin of DePaul University for his many help-
ful suggestions for improving this book.

I warmly thank three individuals who have also made contributions to earlier books.
First, Jeff Gray implemented the Osbert Oglesby case study. Second, Kris Irwin provided a
complete solution to the term project, including implementing it in both Java and C++.
Third, my daughter Lauren was again a coauthor of the Instructor’s Solution Manual and
contributor to the PowerPoint slides.

Turning now to my publisher, McGraw-Hill, as always I am most grateful to my publisher
Betsy Jones and my developmental editor Emily Lupash for their assistance and guidance
from start to finish. I thank copyeditor Gnomi Schrift Gouldin for once again providing so
many effective suggestions. It was a pleasure to work with marketing manager Dawn Bercier,
senior freelance design coordinator Michelle Whitaker, and lead media project manager
Audrey Reiter. Finally, I particularly wish to thank senior project manager Jane Mohr for her
boundless help and support. No problem was too big or too small for her to solve.

As always, I enjoyed working with the compositors at Interactive Composition Corpo-
ration. Amy Rose was a most able project manager.

I would like to thank the many instructors from all over the world who sent me e-mail
regarding the fifth edition. I am exceedingly appreciative of their suggestions, comments,
and criticisms. I look forward with anticipation to receiving instructors’ feedback on this
edition also. My e-mail address is srs@vuse.vanderbilt.edu.

Students, too, have been most helpful. I thank my students at Vanderbilt University for
their numerous questions and comments, both inside and outside the classroom. In partic-
ular, I would like to express my appreciation to Paul Bielaczyc, Zhihong Ding, Shaivya
Easwaren, Kenon Ewing, Sarita Gupta, Julia Irani, Andrews Jebasingh, Pavil Jose, Anantha
Narayanan, Joshua Phillips, Adam Loeb Small, Larry Thomas, Haripriya Venkatesan, and
Bin Zhou, the students in a graduate course on the Unified Process that I recently taught at
Vanderbilt. I am truly grateful for their insights and creative ideas.

I am also most appreciative of the provocative questions and constructive suggestions
e-mailed to me by students from all over the world. As with the previous editions, I look
forward keenly to student feedback on this edition, too.

Finally, as always, I thank my family for their continual support. When | started writing
books, my limited free time had to be shared between my young children and my current book
project. Now that my children are adults and work with me on my books, writing has become
a family activity. For the twelfth time, it is my privilege to dedicate this book to my wife,
Sharon, and my children, David and Lauren, with love.

Stephen R. Schach

Contents

Preface xv

PART ONE
INTRODUCTION TO SOFTWARE
ENGINEERING 1

Chapter 1
The Scope of Software Engineering 3

Learning Objectives 3
1.1 Historical Aspects 4
1.2 Economic Aspects 6
1.3 Maintenance Aspects 7
1.3.1 Classical and Modern Views
of Maintenance 9
1.3.2 The Importance of Postdelivery
Maintenance 11
1.4 Requirements, Analysis,
and Design Aspects 13
Team Development Aspects 15
Why There Is No Planning Phase 16
Why There Is No Testing Phase 17
Why There Is No Documentation
Phase 17
The Object-Oriented Paradigm 18
0 The Object-Oriented Paradigm
in Perspective 23
1.11 Terminology 23
Ethical Issues 26
Chapter Review 27
For Further Reading 27
Key Terms 28
Problems 29
References 30

R
RN

— —)
- \O

Chapter 2
Software Life-Cycle Models 34
Learning Objectives 34

2.1 Software Development in Theory 34
2.2 Winburg Mini Case Study 35

2.3 Lessons of the Winburg
Mini Case Study 39
2.4 Teal Tractors Mini Case Study 39
2.5 Iteration and Incrementation 40
2.6 Winburg Mini Case Study Revisited 44
2.7 Risks and Other Aspects of Iteration
and Incrementation 45
2.8 Managing Iteration and
Incrementation 47
2.9 Other Life-Cycle Models 48
2.9.1 Code-and-Fix Life-Cycle Model 48
2.9.2 Waterfall Life-Cycle Model 49
2.9.3 Rapid-Prototyping Life-Cycle
Model 51
2.9.4 Extreme Programming and Agile
Processes 52
2.9.5 Svnchronize-and-Stabilize Life-Cycle
Model 54
2.9.6 Spiral Life-Cycle Model 54
2.10 Comparison of Life-Cycle Models 58
Chapter Review 59
For Further Reading 60
Key Terms 60
Problems 61
References 61
Chapter 3

The Software Process 64

3.1
3.2

3.3
3.4
3.5
3.6
3.7

Learning Objectives 64

The Unified Process 66

[teration and Incrementation within
the Object-Oriented Paradigm 67
The Requirements Workflow 68
The Analysis Workflow 70

The Design Workflow 72

The Implementation Workflow 73
The Test Workflow 74

3.7.1 Requirements Artifacts 74
3.7.2 Analysis Artifacts 74

3.7.3 Design Artifacts 75

3.7.4 Implementation Artifacts 75

vii

viii Contents

3.8 Postdelivery Maintenance 77
3.9 Retirement 78
3.10 The Phases of the Unified Process 78
3.10.1 The Inception Phase 79
3.10.2 The Elaboration Phase 81
3.10.3 The Construction Phase 82
3.10.4 The Transition Phase 82
3.1 One- versus Two-Dimensional Life-Cycle
Models 83
3.12 Improving the Software Process 84
3.13 Capability Maturity Models 85
3.14 Other Software Process Improvement
Initiatives 88
3.15 Costs and Benefits of Software Process
Improvement 89
Chapter Review 91
For Further Reading 91
Key Terms 92
Problems 92
References 93
Chapter 4
Teams 96
Learning Objectives 96
4.1 Team Organization 96
4.2 Democratic Team Approach 98
4.2.1 Analysis of the Democratic
Team Approach 99
4.3 Classical Chief Programmer
Team Approach 99
4.3.1 The New York Times Project 101
4.3.2 Impracticality of the Classical Chief
Programmer Team Approach 102
4.4 Beyond Chief Programmer
and Democratic Teams 102
4.5 Synchronize-and-Stabilize Teams 106
4.6 Extreme Programming Teams 106
4.7 People Capability Maturity Model 107
4.8 Choosing an Appropriate Team

Organization 108
Chapter Review 109
For Further Reading 109
Key Terms 109
Problems 109
References 110

Chapter 5
The Tools of the Trade 112

Learning Objectives 112

5.1 Stepwise Refinement 112
5.1.1 Stepwise Refinement
Mini Case Study 113
5.2 Cost—Benefit Analysis 118
53 Software Metrics 119
5.4 CASE 121
5.5 Taxonomy of CASE 122
5.6 Scope of CASE 123
5.7 Software Versions 127
5.7.1 Revisions 127
5.7.2 Variations 128
5.8 Configuration Control 129
5.8.1 Configuration Control during
Postdelivery Maintenance 131
5.8.2 Baselines 131
5.8.3 Configuration Control during
Development 132
59 Build Tools 132
5.10 Productivity Gains with
CASE Technology 133
Chapter Review 135
For Further Reading 135
Key Terms 135
Problems 136
References 137
Chapter 6

Testing 139

6.1

6.2

Learning Objectives 139
Quality Issues 140
6.1.1 Software Quality Assurance 141
6.1.2 Managerial Independence 141
Non-Execution-Based Testing 142
6.2.1 Walkthroughs 143
6.2.2 Managing Walkthroughs 143
6.2.3 Inspections 144
6.2.4 Comparison of Inspections and
Walkthroughs 146
6.2.5 Strengths and Weaknesses
of Reviews 147
6.2.6 Metrics for Inspections 147

6.3
6.4

6.5

6.6

6.7

Execution-Based Testing 147

What Should Be Tested? 148

6.4.1 Utility 149

6.4.2 Reliability 149

6.4.3 Robustness 149

6.4.4 Performance 150

6.4.5 Correctness 150

Testing versus Correctness Proofs 152

6.5.1 Example of a Correctness Proof 152

6.5.2 Correctness Proof Mini
Case Study 156

6.5.3 Correctness Proofs and Software
Engineering 157

Who Should Perform Execution-Based

Testing? 159

When Testing Stops 161

Chapter Review 161

For Further Reading 161

Key Terms 162

Problems 162

References 164

Chapter 7
From Modules to Objects 166

7.1
7.2

7.3

Learning Objectives 166

What Is a Module? 166
Cohesion 170

7.2.1 Coincidental Cohesion 170
7.2.2 Logical Cohesion 171

7.2.3 Temporal Cohesion 172
7.2.4 Procedural Cohesion 172
7.2.5 Communicational Cohesion 173
7.2.6 Functional Cohesion 173
7.2.7 Informational Cohesion 174
7.2.8 Cohesion Example 174

Coupling 175

7.3.1 Content Coupling 176
7.3.2 Common Coupling 176
7.3.3 Control Coupling 178
7.3.4 Stamp Coupling 178
7.3.5 Data Coupling 180
7.3.6 Coupling Example 180
7.3.7 The Importance

of Coupling 181

7.4

7.5
7.6
7.7
7.8

7.9

Contents

Data Encapsulation 182

7.4.1 Data Encapsulation and
Development 184

7.4.2 Data Encapsulation and
Maintenance 185

Abstract Data Types 191

Information Hiding 192

Objects 194

Inheritance, Polymorphism, and

Dynamic Binding 198

The Object-Oriented Paradigm 200

Chapter Review 203

For Further Reading 203

Key Terms 204

Problems 204

References 205

Chapter 8
Reusability and Portability 208

8.1
8.2
8.3

8.4
8.5

8.6
8.7

8.8

Learning Objectives 208

Reuse Concepts 209

Impediments to Reuse 211

Reuse Case Studies 212

8.3.1 Raytheon Missile Systems
Division 212

8.3.2 European Space Agency 214

Objects and Reuse 215

Reuse during Design and

Implementation 215

8.5.1 Design Reuse 215

8.5.2 Application Frameworks 217

8.5.3 Design Patterns 217

8.5.4 Sofiware Architecture 220

8.5.5 Component-Based Software
Engineering 222

ix

Reuse and Postdelivery Maintenance 222

Portability 223

8.7.1 Hardware Incompatibilities 224

8.7.2 Operating System
Incompatibilities 225

8.7.3 Numerical Software
Incompatibilities 225

8.7.4 Compiler Incompatibilities 226

Why Portability? 229

x Contents

8.9

Techniques for Achieving
Portability 230

8.9.1 Portable System Software 230
8.9.2 Portable Application Software
8.9.3 Portable Data 232
Chapter Review 233

For Further Reading 233

Key Terms 234

Problems 234

References 236

Chapter 9
Planning and Estimating 240

9.1

9.2

9.3

9.4

9.5

9.6
9.7

9.8
9.9
9.10

92.11

Learning Objectives 240
Planning and the Software
Process 241
Estimating Duration and Cost 242
9.2.1 Metrics for the Size of
a Product 243
9.2.2 Techniques of Cost
Estimation 247
9.2.3 Intermediate COCOMO 249
9.24 CcocomMolIl 252
9.2.5 Tracking Duration and
Cost Estimates 253
Components of a Software Project
Management Plan 254
Software Project Management Plan
Framework 255
IEEE Software Project
Management Plan 257
Planning Testing 260
Planning Object-Oriented
Projects 261
Training Requirements 261
Documentation Standards 262
CASE Tools for Planning
and Estimating 263
Testing the Software Project
Management Plan 263
Chapter Review 263
For Further Reading 264
Key Terms 264
Problems 265
References 266

PART TWO

THE WORKFLOWS OF THE
SOFTWARE LIFE CYCLE 269

Chapter 10
Requirements 271

Learning Objectives 271
10.1 Determining What the Client
Needs 271
10.2 Overview of the Requirements
Workflow 272
10.3 Understanding the Domain 273
10.4 The Business Model 274
10.4.1 Interviewing 274
10.4.2 Other Techniques 275
10.4.3 Use Cases 276
10.5 Initial Requirements 277
10.6 Initial Understanding of the
Domain: The Osbert Oglesby
Case Study 278
10.7 Initial Business Model: The Osbert
Oglesby Case Study 279
10.8 Initial Requirements: The Osbert Oglesby
Case Study 282
10.9 Continuing the Requirements Workflow:
The Osbert Oglesby Case Study 284
10.10 The Test Workflow: The Osbert Oglesby
Case Study 291
10.11 The Classical Requirements Phase 292
10.12 Rapid Prototyping 293
10.13 Human Factors 294
10.14 Reusing the Rapid Prototype 295
10.15 CASE Tools for the Requirements
Workflow 296
10.16 Metrics for the Requirements
Workflow 297
10.17 Challenges of the Requirements
Workflow 297
Chapter Review 299
For Further Reading 299
Key Terms 300
Case Study Key Terms 300
Problems 300
References 301

Chapter 11

Classical Analysis

303
Learning Objectives 303

11.1 The Specification Document 303
11.2 Informal Specifications 305
11.2.1 Correctness Proof Mini Case Study
Redux 306
11.3 Structured Systems Analysis 307
11.3.1 Sallys Software Shop
Mini Case Study 307
11.4 Structured Systems Analysis:
The Osbert Oglesby Case Study 315
11.5 Other Semiformal Techniques 316
11.6 Entity-Relationship Modeling 317
11.7 Finite State Machines 319
[1.7.1 Finite State Machines: The Elevator
Problem Case Study 321
11.8 Petri Nets 325
11.8.1 Petri Nets: The Elevator Problem
Case Study 328
1.9 Z 330
11.9.1 Z: The Elevator Problem
Case Study 330
11.9.2 Analysis of Z 333
11.10 Other Formal Techniques 334
11.11 Comparison of Classical Analysis
Techniques 335
11.12 Testing during Classical Analysis 335
11.13 CASE Tools for Classical Analysis 336
11.14 Metrics for Classical Analysis 337
11.15 Software Project Management Plan:
The Osbert Oglesby Case Study 338
11.16 Challenges of Classical Analysis 338
Chapter Review 339
For Further Reading 339
Key Terms 340
Case Study Key Terms 340
Problems 340
References 342
Chapter 12

Object-Oriented Analysis

121

346

Learning Objectives 346
The Analysis Workflow 347

12.2
12.3

12.4

12.5

12.6

12.7

12.8

129

12.10

12.11

12.12

12.13

12.14

12.15

12.16

1217

12.18

12.19
12.20

Contents Xi

Extracting the Entity Classes 348
Object-Oriented Analysis: The Elevator
Problem Case Study 349

Functional Modeling: The Elevator
Problem Case Study 349

Entity Class Modeling: The Elevator
Problem Case Study 351

12.5.1 Noun Extraction 352

12.5.2 CRC Cards 354

Dynamic Modeling: The Elevator Problem
Case Study 355

The Test Workflow: Object-Oriented
Analysis 358

Extracting the Boundary and

Control Classes 362

The Initial Functional Model: The Osbert
Oglesby Case Study 363

The Initial Class Diagram: The Osbert
Oglesby Case Study 365

The Initial Dynamic Model: The Osbert
Oglesby Case Study 371

Extracting the Boundary Classes: The
Osbert Oglesby Case Study 373
Extracting the Control Classes: The Osbert
Oglesby Case Study 374

Refining the Use Cases: The Osbert
Oglesby Case Study 374

Use-Case Realization: The Osbert Oglesby
Case Study 377

12.15.1 Buy a Masterpiece
Use Case 377
12.15.2 Buy a Masterwork
Use Case 382
12.15.3 Buy Other Painting
Use Case 383
12.15.4 The Remaining Five Use Cases 384

Incrementing the Class Diagram:

The Osbert Oglesby Case Study 386

The Test Workflow: The Osbert Oglesby
Case Study 388

The Specification Document in the Unified
Process 389

More on Actors and Use Cases 390
CASE Tools for the Object-Oriented
Analysis Workflow 391

xii Contents

12.21

Challenges of the Object-Oriented
Analysis Workflow 391

Chapter Review 392

For Further Reading 392

Key Terms 393

Problems 393

References 395

Chapter 13
Design 397

Learning Objectives 397

13.1 Design and Abstraction 398

13.2 Operation-Oriented Design 398

13.3 Data Flow Analysis 399
13.3.1 Mini Case Study: Word Counting 400
13.3.2 Data Flow Analysis Extensions 405

13.4 Transaction Analysis 405

13.5 Data-Oriented Design 407

13.6 Object-Oriented Design 408

13.7 Object-Oriented Design: The Elevator
Problem Case Study 409

13.8 Object-Oriented Design: The Osbert
Oglesby Case Study 412

13.9 The Design Workflow 416

13.10 The Test Workflow: Design 418

13.11 The Test Workflow: The Osbert Oglesby
Case Study 419

13.12 Formal Techniques for Detailed
Design 419

13.13 Real-Time Design Techniques 419

13.14 CASE Tools for Design 421

13.15 Metrics for Design 421

13.16 Challenges of the Design Workflow 422
Chapter Review 423
For Further Reading 423
Key Terms 424
Problems 424
References 425

Chapter 14

Implementation 428

14.1
14.2

Learning Objectives 428
Choice of Programming Language
Fourth-Generation Languages 431

428

143

14.4
14.5
14.6

14.7
14.8

14.9
14.10

14.11

14.12

14.13

14.14

14.15

14.16

433

Use of Consistent and Meaningful
434

The Issue of Self~-Documenting
Code 435

Use of Parameters

Good Programming Practice
14.3.1

Variable Names
14.3.2

14.3.3
14.3.4

436
Code Lavout for Increased
Readability 437
14.3.5 Nested if Statements
Coding Standards 439
Code Reuse 439
Integration 440

14.6.1
14.6.2
14.6.3
14.6.4

437

Top-down Integration 440

442

442
Integration of Object-Oriented
Products 443

14.6.5 Management of Integration 444
The Implementation Workflow 445

The Implementation Workflow: The Osbert
Oglesby Case Study 445

The Test Workflow: Implementation 446
Test Case Selection 446

14.10.1

Bottom-up Integration
Sandwich Integration

Testing to Specifications versus

Testing to Code 446

Feasibility of Testing to

446

Feasibility of Testing

to Code 447

Black-Box Unit-Testing

Techniques 450

14.11.1 Equivalence Testing and Boundary
Value Analysis 450

14.11.2 Functional Testing 451

Black-Box Test Cases: The Osbert Oglesby

Case Study 452

Glass-Box Unit-Testing Techniques

14.13.1 Structural Testing: Statement,
Branch, and Path Coverage 455

14.13.2 Complexity Metrics 457

Code Walkthroughs and

Inspections 458

Comparison of Unit-Testing

Techniques 458

Cleanroom 459

14.10.2
Specifications
14.10.3

455

