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Preface

This book has grown out of my experience in teaching advanced cal-
culus over a period of more than a dozen years. It has taken shape gradu-
ally as I observed the effect on my students of various presentations of
theory and technique, and as I accumulated experience in the construction
of problems and examination questions. Every part of the book has been
planned to make the whole an effective instrument for imparting the
fundamental principles and methods of analysis to students at the ad-
vanced calculus level. The book is aimed at the student reader; I have
striven to arouse interest at every stage, to motivate the direction of the
exposition, and to achieve clarity through ample illustrative examples and
particular care in directing the course of the reasoning.

In many of the chapters the first section is devoted to one or more of
the following: (1) setting forth in general terms the aim of the chapter,
(2) supplying motivation for the subject matter, (3) explaining my point
of view in fitting the chapter into the book as a whole.

Books on advanced calculus vary widely in choice of subject matter,
in emphasis on particular topics, and in treatment of the relation between
elementary and advanced calculus. These are matters on which no one
book can fully please all users. For lack of space I have omitted treat-
ment of some topics which I would have liked to include. The emphasis
is on sound understanding of concepts, and on the basic principles of
analysis: those properties of the real number system which support the
theory of limits and continuity. But the thread of theoretical develop-
ment is imbedded in an ample exposition of the methods and techniques
which are needed by every student of advanced applied mathematics
There is a generous and rich supply of exercises and problems.

Learning in calculus is cumulative. It is also evolutionary. The stu-
dent does not come all at once to a one and only correct understanding
of new ideas. At each new level of his maturity he can gain a fresh ap-
preciation of things he has already been taught. An advanced calculus
should not ignore or discard all that a student already knows about cal-
culus. Rather, it should build upon what he knows, and strengthen that
knowledge by emphasis upon those aspects of elementary calculus which
are given least attention in the usual freshman and sophomore courses,
and which become increasingly important as a student progresses into
more advanced analysis. Chapter I of the present book is designed to be
used for building in this way.
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vi ADVANCED CALCULUS

The book is written on the assumption that students using it have
normal skill in the formal aspects of elementary calculus, and that they
can draw freely on the standard formulas of algebra, trigonometry, and
calculus relative to the elementary functions. Some of the logical issues
pertaining to the definition of logarithms, exponentials, and trigonometric
functions are not fully met in elementary calculus, of course. But I prefer
not to tackle these issues prematurely. They can be settled in due time,
and in a variety of ways, once the student knows enough about definite
integrals, infinite series, and uniform convergence. Meanwhile, the stu-
dent is eager to get on to new ideas, new techniques, new applications.

A word about the system of numbering. Sections within each chapter
are numbered in decimal order. Thus, in Chapter XVII, § 17.21 and
§ 17.22 follow each other between § 17.2 and § 17.3. The first section in
each chapter has no digits after the decimal point. Formulas in each
section are numbered with consecutive integers after a dash which follows
the section number in which the formulas occur. Thus, formulas in
§ 12.31 range from (12.31-1) to (12.31-6). Theorems are numbered con-
secutively in Roman numerals, starting with Theorem I for the first
theorem in each new chapter. References to theorems usually cite the
theorem number and the section in which it occurs.

I have not attempted to include a bibliography. I have been influ-
enced by many books, both American and European, but I cannot ac-
count for the influences in detail.

In sending the book forth I pay my respects to the memory of one of
my teachers, Professor William Fogg Osgood, and I thank heartily all
those students and colleagues who have taken an interest in seeing the
book brought to completion.

ANGUS E. TAYLOR
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CHAPTER I

Fundamentals
of Elementary Calculus

1. Introduction

A course in advanced calculus must build upon the presumption that
students studying the subject have already gained some knowledge of
elementary calculus. We shall therefore begin by taking a backward look
over those parts of calculus with which the reader of this book should
have facility and a measure of understanding. Our object in such a
retrospect is not to conduct a systematic review. The purpose is, rather,
to establish a common point of view for students whose training in cal-
culus, up to this point, must inevitably reflect a wide variety of practices
in teaching, choice of subject matter, and distribution of emphasis be-
tween the acquisitions of problem-solving skills and mastery of funda-
mental theory. As we survey the field of elementary calculus we shall
stress the conceptual aspect of the subject: fundamental definitions and
processes which underlie all the applications. In a first course in calculus
it is often the case that the fundamental notions are introduced through
the medium of particular geometrical or physical applications. Thus, to
the beginner, the derivative may be typified by, or even identified with,
the speed of a moving object, while the integral is thought of as the area
under a curve. We now seek to take a more general, or abstract, view.
Differentiation and integration are processes which are carried out upon
functions. We need to have a clear understanding of the definitions of
these processes, quite apart from their applications.

Another aspect of our survey will be our concern with the logical un-
folding of the fundamental principles of calculus. Here again we strive
to take a more mature point of view. We wish to indicate in what re-
spects it is desirable and necessary to look more deeply into the deriva-
tions of rules and proofs of theorems. There are places in elementary
calculus, as usually taught to beginners, where the development is neces-
sarily inadequate from the standpoint of logic. In many places the
reasoning leans heavily on intuition or on one sort or another of plausibil-
ity argument. That this state of affairs persists is partly due to a delib-

erate placing of emphasis: we make our primary goal the attainment
3



= ADVANCED CALCULUS §1.1

of skill in the manipulative techniques of calculus which lend themselves
readily to applications at an elementary level in physics, engineering,
and the like. This kind of skill (up to a certain point) can be imparted
without paying much attention to questions of logical rigor. But it is
also true that there are logical inadequacies in a first course in calculus
which cannot be made good entirely within the customary time limits of
such a course (two or three semesters), even where a reasonably heavy
emphasis is laid upon “theory.” At bottom the subject of calculus rests
upon the real number system and the theory of limits. A full apprecia-
tion and understanding of this foundation material must come slowly, but
the need for such understanding becomes more acute as we progress in
learning. In advanced calculus we must make a deeper study of the real
number system, of the theory of limits, and of the properties of continuous
functions. In this way only can we proceed easily and with confidence
to a mastery of many new concepts and processes of higher mathematics.

1.1 Functions

At the very outset we must discuss the mathematical concept of a
function, for we shall constantly be talking about properties of functions
and about processes which are applied to functions. The function concept
has been very much generalized since the early development of calculus
by Leibniz and Newton. At the present time the word “function” is used
broadly to mean any determinate correspondence between two classes of
objects.

EXAMPLE 1. Consider the class of all plane polygons. If to each
polygon we make correspond the number which is the perimeter of the
polygon (in terms of some fixed unit of length), this correspondence is a
function. Here the first class of objects is composed of certain geornet-
rical figures, while the members of the second class are positive numbers.

To begin with, let us consider functions which are correspondences
between classes of real numbers. Such functions are called real functions
of a real variable. The first class of numbers is the domain of definition
of the function. Once this domain (call it D) has been specified, the func-
tion is defined as soon as a definite rule of correspondence has been given,
assigning to each number of D some corresponding number (or numbers).
If x is a symbol which may be used to denote any member of D, we call
x the independent variable of the function. Sometimes there may be more
than one number corresponding to a given value of x; in this case the
function is said to be multiple-valued. 1f there is just one number corre-
sponding to each value of x, the function is said to be single-valued. We
usually find it possible to deal with multiple-valued functions by sepa-



