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Flements of Mathematical Ecology

Elements of Mathematical Ecology provides an introduction to classical and
modern mathematical models, methods, and issues in population ecology.
The first part of the book is devoted to simple, unstructured population
models that, for the sake of tractability, ignore much of the variability
found in natural populations. Topics covered include density dependence,
bifurcations, demographic stochasticity, time delays, population interactions
(predation, competition, and mutualism), and the application of optimal
control theory to the management of renewable resources. The second part
of this book is devoted to structured population models, covering spatially
structured population models (with a focus on reaction-diffusion models),
age-structured models, and two-sex models. Suitable for upper level students
and beginning researchers in ecology, mathematical biology and applied
mathematics, the volume includes numerous line diagrams that clarify the
mathematics, relevant problems throughout the text that aid understanding,
and supplementary mathematical and historical material that enrich the main
text.

MARK KOT is Associate Professor in the Department of Applied Mathe-
matics at the University of Washington, Seattle, USA.



Preface

Ecology is an old discipline. The discipline was christened in 1866 by
Ernst Haeckel, a well-known German evolutionary biologist. Haeckel was a
neologist — he loved to invent new scientific terms. His most famous gems
are phylogeny and oecologie. Oecologie and ecology take their derivation
from the Greek oikos, house or dwelling place. Ecology, as envisioned by
Haeckel, is the study of the houses and the housekeeping functions of plants
and animals. It is the scientific study of the interrelationships of organisms,
with each other, and with their physical environment. The idea of ecology
is even older (Worster, 1994). It is closely related to 18th century notions of
the balance or economy of nature reflected, most clearly, in Linnaeus’s 1749
essay Oeconomia Naturae (Stauffer, 1960).

Ecology is also a diverse discipline. After all, it has all of life to account for.
In the old days, it was common to divide ecology into two subdisciplines:
autecology, the ecology of individual organisms and of populations, and
synecology, the study of plant and animal communities. Ecology is now
divided into many subdisciplines (see Table 1).

Several subdisciplines use mathematics. For example, behavioral ecology
makes extensive use of game theory and of other brands of optimization. It
is impossible to cover all of these subdisciplines in one short book. Instead, I
focus on population ecology and engage in occasional forays into community
ecology and evolutionary ecology. This book could, and perhaps should, have
been entitled The Dynamics of Biological Populations.

The material in this book has been used to teach a two-semester course.
There is, therefore, a dichotomy in these notes. The first semester of the
course is devoted to unstructured population models, models that, in ef-
fect, treat organisms as *homogeneous green gunk’. Unstructured population
models have the advantage, at first, of simplicity. As one adds extra bits

Vil
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Table 1. Branches of ecology

Synecology  Landscape ecology
Systems ecology
Community ecology

Autecology  Population ecology
Evolutionary ecology
Behavioral ecology
Physiological ecology
Chemical ecology

of biology, these models become more realistic and more challenging. The
topics in the first half of the book include density dependence, bifurcations,
demographic stochasticity, time delays, population interactions (predation,
competition, and mutualism), and the application of optimal control theory
to the management of renewable resources.

Variety, and variability, are the spice of life. We frequently ascribe dif-
ferences in the success of individuals to differences in age, space (spatial
location), or sex. The second half of this book is devoted to structured pop-
ulation models that take these variables into account. I begin with spatially-
structured population models and focus on reaction-diffusion models. There
is also tremendous interest in metapopulation models, coupled lattice maps,
integrodifference equations, and interacting particle systems (Turchin, 1998;
Hanski, 1999). However, my colleagues and I tend to leave this material for
our advanced course. I follow with an overview of age-structured population
models in which I compare integral equations, discrete renewal equations,
matrix population models, and partial differential equations. I conclude with
a brief introduction to two-sex models.

The emphasis in these notes is on strategic, not tactical, models (Pielou,
1981). I am interested in simple mechanistic models that generate interesting
hypotheses or explanations rather than in detailed and complex models
that provide detailed forecasts. You will also find many equations, but few
formal theorems and proofs. Applied scientists and pure mathematicians
both have reason to be offended ! Because of the interdisciplinary nature
of my class and because of my own preference for solving problems over
proving theorems, I have tried to hold to a middle course that should appear
natural to applied mathematicians and to theoretical biologists. I hope that
this middle course will appeal to a broad range of (present and future)
scientists. Failing that, I hope that you, gentle reader, can use this book as
a springboard for more detailed applied and theoretic investigations.
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Section A
SINGLE-SPECIES MODELS

1 Exponential, logistic, and Gompertz growth

Tradition dictates that we begin with a simple homogeneous population.
This population is that ‘homogeneous green gunk’ that I referred to in the
preface. I will represent the number (or sometimes the density) of individuals
in this population by N(¢). I will also make frequent reference to the rate
of change, dN /dt, and to the per capita rate of change, (1/N)dN /dt, of this
population.

Let us assume that all changes in this population result from births and
deaths and that the per capita birth rate b and per capita death rate d are
constant:

1 dN

N dr
The difference between the per capita birth and death rates, r = b — d, plays
a particularly important role and is known as the intrinsic rate of growth.
Equation (1.1) is commonly rewritten, in terms of r, as

d~N
dt

One must also add an initial condition, such as

= b—d (1.1)

= rN. (1.2)

N() = Ny, (1.3)

that specifies the number of individuals at the start of the process.

Equation (1.2) is a linear, first-order differential equation. It is easily
integrated, either as a separable equation or with an integrating factor, and
it possesses the solution

N(t) = Npe'. (1.4)

This solution grows exponentially for positive intrinsic rates of growth and

3



4 A. Single-species models

1 &
N dt
i

Fig. 1.1. Per capita growth rate.

dN
dt

rN

Fig. 1.2. Population growth rate.

decays exponentially for negative intrinsic rates of growth. It remains con-
stant when births balance deaths.

Three different graphs capture the behavior of this system. In Figure 1.1,
I have plotted the per capita growth rate as a function of the population
size. The per capita growth rate remains constant for all population sizes:
crowding has no effect on individuals. However, the growth rate for the
entire population (Figure 1.2) increases with number as each new individual
adds its own undiminished contribution to the total growth rate. The result
(Figure 1.3) is a population that grows at ever-increasing rates.

The population size N* = 0 is an equilibrium point. Since there is no
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r>0

Fig. 1.3. Population trajectory.

immigration or emigration in this model, populations that start at zero stay
at zero. For positive r, this equilibrium is unstable. After small perturbations,
the population moves away from zero. For negative r, this equilibrium is
asymptotically stable. Small perturbations now decay back to zero. I will say
more about equilibria and stability later.

Problem 1.1 Monod’st nightmare

Escherichia coli is a bacterium that has been used extensively in microbio-

logical studies. Escherichia coli cells are rod shaped; they are 0.75 um wide

and 2 um long. Under ideal conditions, a population of E. coli doubles in

just over 20 minutes.

(1) Whatis r for E. coli?

(2) If No = 1, how long would it take for an exponentially growing population of
E. coli experiencing ideal conditions to fill your classroom?

There are several defects with this simple exponential model:

(1) The model has constant per capita birth and death rates and generates limitless
growth. This is patently unrealistic.

(2) The model is deterministic; we have ignored chance or stochastic effects.
Stochastic effects are particularly important at small population sizes.

+ Jacques Monod (1910-1976) was the recipient of a 1965 Nobel Prize for Medicine for his work on
gene regulation. He also conducted innovative experimental studies on the kinetics and stoichiometry
of microbial growth (Panikov, 1995).
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1 dN
N dt
r._

| N
K

Fig. 1.4. Decreasing per capita growth rate.

(3) The model ignores lags. The growth rate does not depend on the past. More-
over, the population responds instantaneously to changes in the current popu-
lation size.

(4) We have ignored temporal and spatial variability.

Let us start with the first defect.

What are the factors that regulate the growth of populations? There
have been two schools of thought. In 1933, A. J. Nicholson, an Australian
entomologist, published a seminal paper in which he stressed the importance
of density-dependent population regulation. Nicholson (1933), the British
ornithologist David Lack (1954), and others argued that populations are
regulated by biotic factors such as competition and disecase that have a
disproportionately large effect on high-density populations. The opposing
view, promulgated by the Australian entomologists H. G. Andrewartha
and L. C. Birch (1954), is that populations are kept in check by abiotic,
density-independent factors, such as vagaries in the weather, that have as
adverse an effect on low-density populations as they do on high-density
populations.

The dispute between these two schools occupied ecology for most of the
1950s (Tamarin, 1978; Kingsland, 1985 Sinclair, 1989). Density-dependent
and density-independent factors may both be important in regulating pop-
ulations. From a modeling perspective, however, it is easier to start with
density-dependent regulation.

Consider a per capita growth rate that decreases linearly with population
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dN
dt

N

l
K

Fig. 1.5. Parabolic population growth rate.

size,

1 dN N
I 1 = — 1.5
N d ( K) (1.5)
(see Figure 1.4). This decrease in the per capita growth rate may be thought
of as an extremely simple form of density-dependent regulation. Note that
the per capita growth rate falls to zero at the carrying capacity K.
The population’s growth rate,

dN N

is now a quadratic function of population size (see Figure 1.5). Equation (1.6)
is known as the logistic equation or, more rarely, as the Pearl-Verhulst
equation. It has an exact analytical solution. Figure 1.6 illustrates this solution
for two different initial conditions. You are asked to find this closed-form
solution in Problem 1.2. Since few nonlinear differential equations can be
solved so easily, I will concentrate on a general method of analysis that
emphasizes the qualitative features of the solution.

Equation (1.6) has two equilibria, N* = 0 and N* = K ; at each of these
two values, the growth rate for the population is equal to zero. Near N* = 0,
N?/K is small compared to N so that

dN

— . 1.
i rN (1.7)
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Fig. 1.6. Logistic growth.

For r > 0, small perturbations about N* = 0 grow exponentially; the
equilibrium N* = 0 is unstable.

Problem 1.2 Exact solution of the logistic equation
Show that the logistic equation has the solution

N(t) = 5 (1.8)

L5 (E D)o

(1) treating the logistic equation as a separable equation, and
(2) treating the logistic equation as a Bernoulli equation.

Close to N* = K, we instead introduce a new variable that measures the
deviation of N from K :

x = N —K. (1.9)
Substituting N = K + x into equation (1.6) gives us
dx roos
— = —rx — —Xx°, 1.10
dt PR R ( )
and since x is small for N close to K, we have that
dx
d_: ~ —rx. (1.11)
For r > 0, small perturbations about N* = K decay exponentially; the

equilibrium N* = K is asymptotically stable. For positive r, solutions to the



