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Nathan Jacobson Finite-Dimensional Division Algebras over Fields



PREFACE

These algebras determine, by the Wedderburn Theorem, the semi-simple finite
dimensional algebras over a field. They lead to the definition of the Brauer
group and to certain geometric objects, the Brauer-Severi varieties.

We shall be interested in these algebras which have an involution. Algebras
with involution arose first in the study of the so-called “multiplication algebras
of Riemann matrices”. Albert undertook their study at the behest of Lefschetz.
He solved the problem of determining these algebras. The problem has an
algebraic part and an arithmetic part which can be solved only by determining
the finite dimensional simple algebras over an algebraic number field. We are
not going to consider the arithmetic part but will be interested only in the
algebraic part. In Albert’s classical book (1939), both parts are treated. A
quick survey of our Table of Contents will indicate the scope of the present
volume.

The largest part of our book is the fifth chapter which deals with involu-
torial simple algebras of finite dimension over a field.

Of particular interest are the Jordan algebras determined by these algebras
with involution. Their structure is determined and two important concepts
of these algebras with involution are the universal enveloping algebras and
the reduced norm. Of great importance is the concept of isotopy. There are
numerous applications of these concepts, some of which are quite old.

In preparing this volume we have been assisted by our friends, notably
Jean-Pierre Tignol and John Faulkner. Also, I am greatly indebted to my
secretary, Donna Belli, and to my wife, Florie. I wish to thank all of them for
their help.
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I. Skew Polynomials and Division Algebras

We assume the reader is familiar with the standard ways of constructing “sim-
ple” field extensions of a given field F', using polynomials. These are of two
kinds: the simple transcendental extension F'(t), which is the field of fractions
of the polynomial ring F[t] in an indeterminate ¢, and the simple algebraic
extension F[t]/(f(t)) where f(t) is an irreducible polynomial in F[t]. In this
chapter we shall consider some analogous constructions of division rings based
on certain rings of polynomials D[t; o, §] that were first introduced by Oystein
Ore [33] and simultaneously by Wedderburn. Here D is a given division ring, o
is an automorphism of D, § is a o-derivation (1.1.1) and ¢ is an indeterminate
satisfying the basic commutation rule

ta = (ca)t + ba (1.0.1)
for a € D. The elements of D[t; 0, 8] are (left) polynomials
ag + art + - - - + ant™, a; € D (102)

where multiplication can be deduced from the associative and distributive laws
and (1.0.1) (cf. Draxl [83]). We shall consider two types of rings obtained from
Dlt; 0, 6]: homomorphic images and certain localizations (rings of quotients)
by central elements. The special case in which § = 0 leads to cyclic and gener-
alized cyclic algebras. The special case in which ¢ = 1 and the characteristic
is p # 0 gives differential extensions analogous to cyclic algebras.

The rings D|t; 0, 6] are principal ideal domains, that is, they are rings
without zero divisors in which all one-sided ideals are principal. We shall
develop the necessary arithmetic of such domains and use this to derive results
on cyclic and generalized cyclic algebras and their differential analogues.

1.1. Skew-polynomial Rings

Let R be a ring (with 1 and the usual conventions on homomorphisms and
subrings of unital rings), ¢ a ring endomorphism of R, § a left o-derivation of
R, that is, ¢ is additive and for a,b, € R,

6(ab) = (oa)(6b) + (6a)b (1.1.1)
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which implies §(1) = 0. Let R[t; 0, 6] be the set of polynomials
ag+ ait + - + a,t" (1.1.2)

where the a; € R and equality and addition are defined as usual. In particular,
t is transcendental over R in the sense that ag + a1t +---+ apt" =0=a; =
0, 0< i< n.Evidently, R[t;0,§] is a free (left) R-module (with the obvious
module structure). We wish to make R[t; 0, §] into a ring in which we have the
relation

ta = (ca)t + da, a € R. (1.1.3)
Then associativity and the distributive laws imply that

t"a = Z(Snja)tj, n>0 (1.1.4)

i=0
where S,,; satisfies the recursion formula
Snj = 5Sn_1,]’ + USn—l,j—l (1.1.5)

and Sgo = 1g (identity map), Sio = 6, S11 = o, by (1.1.3). It follows that
Snj, 0<j<mn,isasum of all the monomials in o and é that are of degree
j in o and of degree n — j in 4, e.g.,

Snn=0", Spp-1= "+ 0" 260+ -+ o™ L.

‘We now define N

(at™)(bt™) = Za(Snjb)tj+m (1.1.6)
Jj=0
where S,,; is defined by (1.1.5) and Spo = 1g, and we define products of
polynomials in ¢ by this and the distributive laws:

(Zant™)(Zbmt™) = 5(ant™)(bmt™).

To see that R[t; o, ] is a ring it suffices to check the associative law of multi-
plication. A direct verification of this is rather tedious. We shall prove associa-
tivity by using a representation by infinite row-finite matrices with entries in
R. We denote the set of matrices whose rows are infinite sequences of elements
of R with only a finite number of nonzero entries in each row by M, (R). It
is well known and readily verified that this is a ring under the usual matrix
compositions.
For a € R we define

a 0 0
ba ca O

a’ = (Sya) = , o (1.1.7)
Snoa Spia - ... Sppa O
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and

oo
t'= Zei,i+1 (1.1.8)
1

where e;; is the matrix in M,,(R) with 1 in (i, j)-position and 0’s elsewhere.
Using (1.1.5) we can prove by induction on n the Leibniz formula

(oo}
Samab="_ (Snja)(Sjmb) =) _(Snja)(Sjmb) (1.1.9)
m<j<n Jj=0
where we take S,; = 0 if j > n. This formula implies that a ~» a

is a monomorphism of R onto a subring R’ of M, (R). Direct verification
shows also that t'a’ = (ca)'t’ + (6a)’. This implies that (a't™)(¥'t'™) =
> =0 @ (Sn;b)'t7 ™. 1t follows that Ya;t! ~» Fajt” is a homomorphism of
R[t;0,68] into M,,(R). It is readily seen also that Ya/t =0 = a} =0, j > 0.
This implies that we have a monomorphism of R[t; o, §] into M, (R) and hence
that R[t;0,6] is a ring.

From now on we assume R = D is a division ring. Then ¢ is a monomor-
phism. If f(t) = ap + a1t + --- + a,t™ with a, # 0 we define deg f(t) = n.
Also, we put deg 0 = —oo. If g(t) = bo + b1t + -+ + byt™, by # 0, then
ft)g(t) =+ + an(0™bp)t"™ and a,(c™by,) # 0. Hence

deg fg =deg f +deg g. (1.1.10)

This implies that D[t; o, 6] is a domain, that is, has no zero divisors # 0.

We establish next a left division algorithm in DJt; 0,46], that for any
f(t),g(t) € D[t;o,6] with g # 0 there exist unique ¢(t),r(t) with deg r(t) <
deg g(t) such that

£(t) = a®)g(t) +r(2). (L1.11)

Suppose f(t) = ap + a1t + -+ + ant™, g(t) = by + bit + --- + b,t™ where
bm # 0. If n < m we have f(t) = 0g(t) + f(¢), and if n > m, we have

f(t) = an(0™ ™by) M ™g(t) = al, "1 4. (1.1.12)

Hence the existence of ¢(t) and r(t) follow by induction on n. The uniqueness
follow by degree considerations.

A ring R is called a left (Tight) principal ideal domain (abbreviated as left
or right PID) if every left (right) ideal in R is principal, that is, has the form
Ra (aR). The existence of the left division algorithm in R = DI[t; o, §] implies
in the usual way that R is a left PID.

A ring R is called left noetherian if it satisfies the ascending chain condi-
tion for left ideals. R is said to satisfy the left Ore-Wedderburn condition if
given a € R and s regular in R (that is not a zero divisor) there exist
a1 € R, s; regular in R such that sja = a;s. For a domain this is equiv-
alent to: Ra(\Rb# 0 for any a # 0, b # 0.
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Proposition 1.1.13. If R is a domain we have the following implications:
(i) R is a left PID = (ii) R is left noetherian = (iii) R satisfies the left
Ore- Wedderburn condition.

Proof. (i) = (ii) is clear since (ii) is equivalent to the condition that every left
ideal is finitely generated. To show that (ii) = (iii), let a and b be non-zero
elements of R. We have the ascending chain of left ideals

Ra C Ra+ Rab C Ra+ Rab+ Rab* C ---.

Hence we have Ra + Rab + --- + Rab* = Ra + Rab+ - -- + Rab*t! for some
k. Then we have z; € R such that

0# ab®t! = zoa + z1ab + - - - + zab®.

Not all the z; = 0. Let z, be the first # 0. Then ab*t! = zpab™ + - - - + zab”
with zj, # 0. Cancelling b* we obtain

0# zpa = ab L o Thpy1ab— - — :I:kabk_h € RaN Rb

and the Ore-Wedderburn condition holds. O

This condition insures that R can be embedded in a (left) quotient division
ring Q(R) (or Q¢(R)), that is, a division ring containing R as subring such
that every element of Q has the form b~'a,b,a € R. We shall not give the
proof since the theorem will play only a marginal role in the sequel (see Section
1.11). An interested reader may consult Jacobson [43], p. 118f or ex. 6 on p.
119 of BAI for a proof.

Conditions (ii) and (iii) hold for R = D[t; o, é] since this is a left PID. On
the other hand, we have

Proposition 1.1.14. R = D[t;0,6] is a right PID if and only if o is an
automorphism.

Proof. If o is an automorphism we have the relation

at =t(c"'a) — 607 a (1.1.15)
which implies that if we put ¢/ = ¢~! and §' = —§o~! then
&' (ab) = a(8'b) + (8'a)(o'd) (1.1.16)

(cf. 1.1.1). Moreover, every element of R can be written in one and only one
way in the form ag + ta; + t%as + - - - + t"ap, a; € D. It follows by symmetry
that we have a right division algorithm and hence that R is a right PID.
Conversely, suppose R is a right PID and let a € D* = D\{0} (\ denotes
set theoretic complement). By the right-handed version of Proposition 1.1.13,
R has the right Ore property. Hence tR [ atR # 0 and so we have f(t), g(t) # 0
such that ¢f(t) = atg(t). Then deg f(t) = deg g(t) and f(t) = ag +ayt+---+
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ant™, g(t) = bo + bit + - -+ + bpt™ with a, # 0, b, # 0. Comparing terms of
highest degree we obtain

oa, = acb,, a = oa,b; .

Thus a € oD. Since a was any non-zero element of D, we see that o is
surjective and hence o is an automorphism. O

We shall call D[t; 0, 8] a differential polynomial ring if c =1 and a twisted
polynomial ring if § = 0 or, more generally, if these situations can be realized
by replacing t by another generator for R over D of the form ¢ = ut + v,u €
D*, v € D. Then t = u/t'+v' where v’ = v™1,v' = —u~lvand t'a = (0’a)t/ +¢&'
where

o'a =u(oa)u™?, §a=u(ba)+va—u(ca)u'v. 1 )

The first of these equations shows that if ¢ is an inner automorphism then
we may take ¢/ = 1 so we have a differential polynomial ring. The second
equation in (1.1.17) shows that if we have 6 = 0 then replacing ¢t by ' =t +v
gives the new o-derivation

§ =654 :a~ (ca)v—va (1.1.18)

which we call an inner o-derivation. Also we see that if § has this form then
replacing t by t' = t — v gives § = 0 so we have a twisted polynomial ring.
We therefore have

Proposition 1.1.19. If o is an inner automorphism, then R = D[t;0,6] is
a differential polynomial ring and if 6 is an inner o-derivation then R is a
twisted polynomial ring.

From now on we assume that ¢ is an automorphism. This implies that the
center C of D is stabilized by o and we have the following

Proposition 1.1.20. If the restriction o|C # 1¢ then R is a twisted polyno-
mial Ting.

Proof. By hypothesis, there exists a ¢ € C such that oc # ¢ so we can replace
t by t' = ct — tc = (¢ — oc)t — éc. This replaces § by &' as in (1.1.17) where
u =c— oc and v = —dc. Then for any a € D,
8'a = (c— éc)ba — (6c)a + (ca)be (since u € C)
= c¢(ba) + (ca)(6c) — (oc)(6a) — (6c)a
= 6(ac) — 6(ca) =0

Hence R is a twisted polynomial ring. O

Theorem 1.1.21. If the dimensionality [D : C] < oo then R = DIt;0,6) is
either a twisted polynomial ring or a differential polynomial ring.
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Proof. If 0 | C # 1¢ then R is a twisted polynomial ring by 1.1.20. On the
other hand, if o | C = 1¢ then ¢ is an inner automorphism by the Skolem-
Noether theorem. Then R is a differential polynomial ring by 1.1.19. O

Since we are assuming ¢ is an automorphism, R = D[t; o, 6] is both a left
and a right PID. A ring of this sort will be called simply a PID.

We now consider the (two sided) ideals in any PID R. If I is such an
ideal, then I = Rd = d*R and for any a € R there exist a’, a € R such that
da = a'd, ad* = d*a. Also d = d*u, d* = vd for u,v € R and d = vdu = vu'd.
Hence vu’ = 1 and since R is a domain v'v = 1 (by (v'v — 1)u’ = 0). Hence
v is a unit. Similarly « is a unit. Then dR = d*uR = d*R = I so we have
I = Rd = dR. Conversely, if d is an element such that for any a € R there
is an @’ and an a such that da = a’d and ad = da then Rd is an ideal and
Rd = dR. An element having this property will be called a two-sided element
of R. It is readily seen that a ~» a’ is an automorphism of R with a ~ a as its
inverse. It is easily seen also that if d is a two-sided element, then so is udv
for any units v and v and if d; = d2d3 and any two of these are two-sided,
then so is the third.

We shall now determine the two-sided elements, hence, the ideals in
twisted polynomial and differential polynomial rings. We assume first that
R = Dl[t; 0] = D[t; 0,0].

Theorem 1.1.22. (i) The two-sided elements of R = DIt; o] are the elements
ac(t)t™ where a € D, n=0,1,... and c(t) € Cent R, the center of R.

(ii) Cent R = Cent D (Inv (o), where Inv(c) = {d € D | od = d}, if no
non-zero power of o is an inner automorphism of D.

(ii1) Let o have finite order r modulo inner automorphisms and suppose
0" =1I,:x~ uzu~!, u € D*. Then Cent R is the set of polynomials of the
form

Yo + YU 4+ you T 4 - 4y u Tt (1.1.23)

where v; € Cent D and vy;u~* € Inv(c). Moreover, if r is also the order of
o | Cent D then u can be chosen in Inv(c) and then Cent R = F[u~1t"] the
ring of polynomials in u='t" with coefficients in F = Cent D (\Inv(c). The
last situation holds if [D : Cent D] < co.

Proof. (i) The elements t™ are two-sided and any element of D is two-sided.
Hence any two-sided element has the form ac(t)t™ where a € D and c(t) is a
two-sided element of the form

c(t) =1+cit+cpt’ + -+ emt™,¢; € Dyom # 0. (1.1.24)

The conditions that c¢(t) is two-sided are that for every a € D there exists
an a’ € R such that c(t)a = a’c(t) and there exists a t' € R such that
c(t)t = t'c(t). It follows that a’ € D and then that a’ = a. Also ¢’ = ¢. Hence
¢(t) € Cent R.

(ii) We have Cent R = Cent D[\ Inv{(c). Let F denote this field. If
Cent R 2 F then Cent R contains an element Y " c;t' of degree m > 0.
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Then every c;t* € Cent R. In particular, ¢,t™ # 0 is in Cent R. Then
o™a = c;lacm,a € D, so ¢™ is inner.

(iii) Let r be the order of ¢ modulo inner automorphisms and let ¢" =
I,. Then m = rs and d™r = c'zcnm = u’zu~® implies that ¢, =
vsu~%,7s € Cent D. A similar argument applies to every ctt # 0 in
Cent R. This implies that any element of Cent R has the form (1.1.23)
with 74; € Cent D. The condition that such an element commutes with ¢
is y;u™ € Inv(o).

We have 0"z = uzu~! and 00" = 0”0 so (ou)(oz)(ou)™! = u(oz)u™l.
Hence ou = pu where y € Cent D. Then o%u = (op)pu and v = uuu™! =
o' = (6" ) (op)pu so (6" u) - (op)p = 1. If r is the order of o |
Cent D then this reads Nognt D/F(u) = 1 where N is the norm. Hence, by
Hilbert’s norm theorem (“Satz 90”) there exists a A € Cent D such that
p = Ao A)~t. We may replace u by Au and so we may suppose that ou = u.
Then also oy; = 7; and Cent R = F[u~!#"]. The last statement follows from
the Skolem-Noether Theorem. O

We suppose next that R = D[t;§] = D[t;1,6]. We recall that the set of
6-constants, that is, the a € D such that da = 0 form a division subring,
Const 6, of D. We recall also that if ¥ € Cent D then ¢ is a derivation and
if the characteristic char D = p # 0 then 6P is a derivation. It follows in the
characteristic p case that if the v; € Cent D then

Y08 + Y167 + 7267 + -+ - (1.1.25)
is a derivation. We note also that as a special case of (1.1.4) we have
tha = XJ: (J) (67 a)t". (1.1.26)
im0 \*

Hence, if ¢(t) = 3¢ ¢;t/ then

effia = Zn: zn: (Z) ¢; (B ia)t. (1.1.27)

We now define a D-linear transformation A;, ¢ =0,1,... in Dt; é] by

At = (J)tj—i ifj >4, AP =0if j <. (1.1.28)

1

Then A;e(t) = 377, (Z ) ¢;t""*if 1 < nand Aje(t) = 0ifi > n. If char D =0

then A;c(t) = % (t) where ¢V (t) is the formal i-th derivative of ¢(t). For

Ly Z) Apyit7. Hence

arbitrary characteristic, we can verify that AyA;t7 = ( %

k %
AkAi = < ]':1,) Ak+1; = AzAk (1129)
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Since § is a derivation in D we have a6 = éar, + (da)r for a € D and
ar, the left multiplication z ~» az. Since a ~~ af, is a ring homomorphism the
relation we have noted implies that we have a unique homomorphism of R
into End D such that a ~ ar, t ~ §. We denote the image of f(¢) under
this homomorphism by f1(§) and we abbreviate fr(6)a to f(&)a. Using this
notation and the definition of the A; we can write (1.1.27) as

c(t)a =) ((Aic)(8))at". (1.1.30)

We can now prove

Lemma 1.1.31.

(i) If c(t) = 3o cit’, ¢; € D, and [c(t),a] =0 for a € D then [Akc(t),a] =0
for all k.
(i1) If c(t) € Cent R then every Arc(t) € Cent R.

Proof. (i) By (1.1.30), [e(t),a] = 0 if and only if ac(t) = 35 (Aic)(8)att. Apply
Ay, for 0 < k < n to both sides of this relation. This gives

alge(t) =Y _(Aic)(6)adit' =Y (Aic)(6)a ( i ) fi—k
0 k

Z i—kAxc)( cS)cztz 5

k

which shows that Ac(t) satisfy the condition [Agc(t), a] = 0. Since Agc(t) = 0
for k > n we obtain (i).

(ii) ¢(t) € Cent R if and only if [c(t),a] = 0 for all a € D and [¢(t),t] = 0.
The last condition holds if and only if §c; = 0 for all . It is now clear that (ii)
follows from (i). O

We can now determine the two-sided elements of a ring of differential
polynomials.

Theorem 1.1.32 (Amitsur [57]).

(i) The two-sided elements of R = DIt; 8] are the elements uc(t) where
u € D and c(t) € Cent R.

(i) Either Cent R = F = Cent D) Const § or Cent R = F[z] where z
has the following form

(1.1.33)

_[t-d if char D = 0
tP +71tp ++"Yet—d if chaID:,D

where in the first case 6 = iq the inner derivation = ~ [d, x| and in the second
case the v; € F, 6d =0 and
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&7° +715Pe_1 +o 7.6 =g, (1.1.34)

Proof. (i) The condition that an element is two-sided shows that any monic

two-sided element is in the center. This implies (i).
(ii) We have Cent R(\D = F and this is a proper subset of Cent R if
and only if Cent R contains elements of positive degree. Let ¢(t) = ¢o + ¢1 +
- 4 cpt™ be such an element of least positive degree n. By (1.1.30), every

Ajc(t) € Cent R. By the minimality of the degree of c(t) we have ; ¢ =

0, 1<j<i—1, 1> 1. Since the binomial coefficients ; 1<53<i—1,

are 0 in D if and only if char D = p and ¢ = p® we see that if char D =0 then
c(t) = co+cit and if char D = p then ¢(t) = co+clt+cptp+cpzt” oo epetP”.
In both cases commutativity with ¢ implies that the ¢; € Const 6. If ¢(t) =
co + c1t then 0 = [¢(t), a] = [co,a] + [c1,a]t + c1(6a). Hence ¢; € Cent D so
c1 € F. Then we may assume ¢; = 1 and c(t) = ¢t — d. Then éa = [d,a]. If
char D = p and ¢(t) = co + Y 5o ct?’ then [t*’,a] = 6"’ a (by (1.1.26)) and

hence . .
0= [co,a] + D _les, alt” +_ ¢ (67 )
j=0 =0

Then ¢, € F and Y ¢ c,36P is the inner derivation z ~ [d,z], d = —co. We
may normalize c(t) to c(t) = tP° +'y11§”e_1 +---4+7t—d, v; € F, and we have
(1.1.35). We now write z = t—d if char D = 0 and z = t?" +y, 7" +- - 4ot —d
if char D = p.

It remains to show that Cent R = F[z]. Since F C Cent R and
z € Cent R, F[z] C Cent R. Now let f(t) € Cent R. By division we

obtain

f() =q(t)z+r(t) (1.1.35)
where deg r(t) < deg z. We claim that ¢(t),7(t) € Cent R. For we have
0 = [£(t), 8] = [q(t), =+ [r(8), ) and 0 = [£(t), ] = [q(¢), al-+ [r(¢),a], a € D.
Degree considerations show that [q(t),t] = [¢(¢),a] = [r(¢),t] = [r(t),a] =0
and hence ¢(t),r(t) € Cent R. We can now use induction on the degree of
f(t) to conclude that f(t) € F[z]. Hence F[2] = Cent R. O

The foregoing result implies that if char D = 0 then Cent R = F' unless
6 is an inner derivation, and if char D = p then Cent R = F unless there
exists a monic p-polynomial f(A) = AP° + y AP°7 4 ... + YeA with v; € F
such that f(6) = iq where 6d = 0. Moreover, these conditions are sufficient for
Cent R 2 F. For in the first case if § = i4 then t—d € Cent R and in the second
case if f(8) = iq with 6d = 0 then #*° + vt*"  +---+ vt —d € Cent R.
Moreover, if z is chosen as in the proof then the correspondmg polynomial
FO) =Xy X g YeA is the monic polynomial of least degree such
that f(6) is an inner denva,tlon by a d such that éd = 0.
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1.2. Arithmetic in a PID

Let R be a PID (= left and right PID). We shall work with left ideals Ra
and the corresponding factor R-modules R/Ra. By symmetry, the results will
apply equally well to right ideals.

Suppose Ra D Rb # 0. Then b = ca so a is a right factor of b. We
indicate this by writing a |, b. Conversely, if a |» b then Ra D Rb. This
condition implies that Ra/Rb is a submodule of R/Rb. Now Ra/Rb is cyclic
with generator a + Rb. It is clear that the annihilator of this generator is Rec.
Hence

Ra/Rb = Ra/Rca ~ R/Rc. (1.2.1)

We also have
(R/Rb)/(Ra/Rb) ~ R/Ra. (1.2.2)

We have Ra = Rb # 0 if and only if a |- b and b |, a. Then b = ca,a = db
so b = cdb. Then cd = 1 which implies also that dc = 1 since R is a domain.
Thus ¢ and d are units. Hence a and b are left associates in the sense that
b = ua, u a unit.

We have Ra + Rb = Rd. Then d | a and d | b. Moreover, if e |. a and
e | b then Re D Ra and Re D Rbso Re D Rd and e |, d. Hence d is a right
greatest common divisor (right g.c.d.) of a and b in the obvious sense. Any
two right g.c.d. are left associates. We denote any right g.c.d. of @ and b (=
any d such that Ra + Rb = Rd) by (a,b),.

We have seen that R satisfies the left Ore condition. If @ # 0 and b # 0
then Ra N Rb # 0. We have Ra N Rb = Rm so m = b'a = a’b # 0. Moreover,
ifa|.nand b |, nthen Rm = RaN Rb D Rn so m |, n. Hence m is a left
least common multiple (left l.c.m) of a and b in the obvious sense. Any two
left l.c.m. of a and b are left associates. We denote any one of these by [a, b]e.

We have seen that R is left noetherian. We now show that R is left artinian
modulo any non-zero left ideal Ra, which means that if we have a sequence of
left ideals

Ra; D Ras D ---D Ra 7é 0 (123)
then there exists a k such that Ray = Rag41 = ---. To see this we note that
(1.2.3) is equivalent to

a = b,‘a-,; 7é O, Qai+1 = CiQ4, 1= 1, 2, v aney (1.2.4)

Then a = biai = bi+1ai+1 = bi+1ciai SO bi = bi-}-lci and

bbRCbyRC ---. (1.2.5)
Since R is right noetherian we have byR = bgy 1R = --- for some k. Then
Ck,Ck+1, ... are units and Rar = Raky1 = ---. The condition that R is left

artinian modulo any non-zero left ideal Ra is equivalent to R/Ra is artinian
for any a # 0. Now we recall that a module has a composition series if and
only if it is both artinian and noetherian. Hence we have



