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Preface

Recent years, the empirical likelihood method has received great attention when
we deal with statistical inference for nonparametric and semiparametric regression
models. These models include fully nonparametric regression, single-index, par-
tially linear single-index, varying coefficient models, so on so forth. However, how
to efficiently apply the empirical likelihood to these models is of particular interest
and challenging. This is because for such models, classical empirical likelihood is
not asymptotically distribution-free any more. The main reason that causes this
difficulty is that in such models, there are two unknowns: the parameters of in-
terest and some nonparametric link functions or additive functions, of which we
need to regard them as infinite-dimensional nuisance parameters. Clearly, when
we consider constructing confidence regions for the parameters of interest in these
models, plug-in estimators are needed to replace the unknown nonparametric link
functions. This is a commonly used method in the literatures, but it causes why
the classic empirical likelihood does not have tractable limiting distribution. We in
recent years have been studying this problem and proposed several bias correction
methods to make the empirical likelihood more useful for these models.

Owen (2001) is the only comprehensive book in the empirical likelihood. As the
pioneer in this area, Owen did the fundamental work and collected many important
works in his book. However, for confidence region construction and hypothesis
testing, Owen’s book does not contain the materials about nonparametric and
semiparametric regression models, especially bias correction approaches. Our book
will present these different methods and the applications. Specifically, we will
describe and illustrate the empirical likelihood method with “bias-correction” for
constructing empirical likelihood ratios.

This book is composed of ten chapters. The first chapter will contain some pre-
liminary knowledge. Chapters 2 and 3 will analyze the cross-section data using
the single-index model and the partially linear single-index model. Chapters 4
through 6 will investigate the longitudinal data using the partially linear model,
the varying coefficient model and a nonparametric regression model. Chapter 7
will discuss nonlinear errors-in-covariables models with validation data. Chapters
8 through 10 will investigate missing data using the linear model, a nonparametric
regression model and the partially linear model. Each chapter, except for Chapter
1, of this book will be self-contained so that the reader could focus on any chapter
without much effect on the understanding of the others, and hence can read any



ii Preface

chapters of interest according to reader’s own interest. The emphasis of this book
is on methodologies rather than on theory, with a particular focus on applications
of the empirical likelihood techniques to various semiparametric regression models.
Key technical arguments are presented in the “proofs sections” at the end of each
chapter. This gives interested researchers an idea of how the theoretical results
are obtained. Hopefully, the reader would find the technical arguments useful to
his/her future research. Also from the style of material organization, this book is
more likely a lecture note, rather than a textbook. Most materials come from our
research articles.

This book intends to provide a useful reference for researchers and to serve as a
lecture note to postgraduate students. It is especially for the people working in
the nonparametric and semiparametric statistics area or applying the empirical
likelihood method to other areas. As the empirical likelihood has been one of the
most important tools in statistical analysis, the body of such people is fairly large.
The people who work in this area should be interested in seeing the new approaches
so as to apply it. We hope that the reader will be stimulated to choose or develop
his/her own methodology in the universe of nonparametric and semiparametric
statistics.

We owe much to our friends and colleagues. Chapter 7 is based on the joint work
with W. Stute who had great contribution when we prepared that paper.

Xue's research was supported by the National Natural Science Foundation of China
(10871013), the Beijing Natural Science Foundation (1102008) and the Ph.D. Pro-
gram Foundation of Ministry of Education of China (20070005003) and PHR
(IHLB). Zhu’s research was supported by two grants from the Research Grants
Council of Hong Kong, and partly supported by Yunnan University of Finance and
Economics for his frequent visits to do joint research.

We express our deep gratitude to Ms. Yuzuo Chen for her constant help during
the writing of this book.

Liugen Xue and Lixing Zhu
January, 2010
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Chapter 1

Preliminary knowledge

1.1 Empirical likelihood (EL)
1.1.1 Definition of EL

The method of empirical likelihood developed by Owen (1998, 1990) provided a
means of determining nonparametric confidence regions for statistical functionals.
The method is likelihood based, but does not require the assumption of a parametric
family for the data. Let X1 --- , Xp be independent random vectors in R?, for p >
1, with a common distribution function Fy, and let F,, be the empirical distribution
function, which assigns probability mass n—! to each of the observed data points.
Then F,, maximises the nonparametric likelihood function

n
L(F) = [[ F{X:},
=1
where F is any probability measure on R? and F{X;} is the probability of getting
the value X; in a sample from F. Following Owen (1988, 1990), the empirical
likelihood ratio function is defined as
L(F)

When there are no ties among the Xj;, the empirical likelihood ratio function
takes the form

R(F) = ﬁnpi, pi = F{X:}.

Owen (1988) showed that this formula is still appropriate even when there are ties
in data, with the natural modification Z p; = F{X;}. Taking the supremum
32X, =X,

of R(F) subject to the constraint T(F) = t, forces p; = p; whenever X; = Xj.
In other words, ties among data do not affect this natural re-expression of the
likelihood ratio.

Suppose that interest centres on T(Fy), where T'(-) is a statistical functional.
The nonparametric maximum likelihood estimate of T'(Fp) is T'(Fy,). Owen (1988,
1990) showed that, under some reasonable conditions, sets of the form
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{T(F)|R(F) 2 r}

may be used as confidence region for T'(Fp). In order to keep such regions well
behaved, the class of distributions over which T is evaluated is restricted to those
whose support is the observed sample, denoted by F < Fy,.

Owen (1988, 1990) showed that under quite general conditions —2log{R(F)}
converges to x2 in distribution, where x} is the chi-square distribution with ¢
degrees of freedom, and g is the number of parameters being estimated. Based on
this asymptotic property, appropriate cut-off levels can be determined for empirical
likelihood confidence regions of a specified coverage.

We proceed by analogy with parametric likelihood. Suppose that we are inter-
ested in a parameter # = T(F) for some function T of distributions. The F is a
member of a set F of distributions. In some cases we may take F to be the set of
all distributions on R. More often, we use a smaller set of distributions. Define
the profile likelihood ratio function:

R(8) = sup{R(F)|T(F)=0,F € F}.
Empirical likelihood hypothesis tests reject T'(Fp) = 6, when R(fp) < ro for
some threshold value ry. Empirical likelihood confidence regions are of the form
{6/R(6) = ro}-
In many settings, the threshold 79 may be chosen using an empirical likelihood

theorem (ELT), a nonparametric analogue of Wilks’ theorem.

1.1.2 EL for mean

Suppose that Fp has mean up = (uo1, - , hop) € RP and variance Vo of full rank.
In order to form an empirical likelihood confidence region for pg, we define the
profile empirical likelihood ratio function

n n n
R(u’) = ma‘x{ani Di 2 O;Zpi = 17ZPiXi = M} .
=1 i=1

i=1
Owen (1990) showed that —2log R(p) — X2 in distribution as n — oo, which is
analogous to the parametric case shown by Wilks (1938). Therefore, to construct
an approximate (1 — «)-level confidence region for o, one computes the set

Cuo = {1 € R?| — 2l0g R() < x5(1 — @)},

where x2(1 — ) is defined such that P{x3 < x;(1 - o)} =1-a.
A discussion of the computation of R(i) can be found in Owen (1990, Section 3).
n n

The problem of maximizing ani, subject to the constraints p; > 0, Zpi =1,
i=1 i=1
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n
and Z piX; = u, is shown, using a Lagrange multiplier argument, to be equivalent
i=1

to minimizing the expression — Z log(1+ AT(X; — p)) over A = A(p) € RP, when
t is in the convex hull of the data, i.e. ch({X;,--+,X,}). This alternative version
of the problem is the convex dual of the original. Instead of attempting to solve
a constrained maximization problem, the researcher is faced with the much easier
task of finding the unconstrained minimum of a convex function, a problem for
which many algorithms exist.

1.1.3 Estimating equations

Estimating equations provide an extremely flexible way to describe parameters and
the corresponding statistics. For a random variable X € R9, a parameter 6 € R?,
and a vector-valued function m(X, #) € R® suppose that

E[m(X,6)] = 0. (1.1.1)

The usual setting has p = s and then under conditions on m(X, ) and possibly
on F, there is a unique solution 6. In this just determined case, the true value 6y
may be estimated by solving

=Y " m(X,0)=0 (1.1.2)

for . To write a vector mean by equation (1.1.1), we take m(X,0) = X — 6, and
then equation (1.1.2) gives § = X. For P(X € A) take m(X,0) = I{X € A} — 0.
For a continuously distributed scalar X and 8 € R, the function m(X,0) = I{X <
0} — a defines @ as the o quantile of X. Owen (2001, Section 3.6) described tail
probabilities and quantiles in more detail.

Equation (1.1.2) is known as an estimating equation, and m(X,0) is called
estimating function. Most maximum likelihood estimators are defined through
estimating equations.

The underdetermined case s < p can also be useful. Then (1.1.1) and (1.1.2)
might each have an s — p dimensional solution set of @ values. Some functions of 8
may be precisely determined from the data, while the others will not.

In econometrics, considerable interest attaches to the overdetermined case with
s > p. In problems with s > p the fact that (1.1.1) holds is a special feature of F
and constitutes important side information. Even when (1.1.1) holds for the true
Fy, it will not ordinarily hold for the nonparametric maximum likelihood estimate
F, in which case (1.1.2) has no solution. The generalized method of moments looks
for a value § that comes close to solving (1.1.1). An empirical likelihood approach
to this problem was described in Owen (2001, Section 3.10).
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The empirical likelihood and estimating equations are well suited to each other.
The empirical likelihood ratio function for 8 is defined by

n n n
R(p) = max{H np;|p; 2 O,sz‘ = 1yZPim(Xi’9) = 0} :
i=1

i=1 i=1
Owen (2001) showed that —2log R(u) — X2 in distribution as n — oco, where 6
satisfies E[m(X,6)] = 0.

1.1.4 Advantages of EL

For parametric models, the empirical likelihood has been proved to be a very pow-
erful tool. It has many advantages over normal approximation based method and
the bootstrap method for constructing confidence intervals. First, the empirical
likelihood-based confidence region does not need to impose prior constraints on
the region shape, and the region is range preserving and transformation respect-
ing (see Hall and La Scala, 1990). In addition, the empirical likelihood does not
require the construction of a pivotal quantity. Second, as DiCiccio, Hall and Ro-
mano (1991) proved, the empirical likelihood is Bartlett correctable, and thus has
an advantage over the bootstrap method. Third, the empirical likelihood does not
involve a plug-in estimation for the limiting variance, which is used to make tests
scale invariant. This is of particular importance especially for model checking.
As is known, the limiting variance of the residuals is model dependent, and gets
larger under alternatives than it does under null. Any plug-in estimator is then
also model dependent, and in most of cases, becomes larger under the alternatives.
This often deteriorates the power performance. Reader can refer to Stute, Thies
and Zhu (1998) and Stute and Zhu (2005).

1.1.5 Related literature

The first use of an empirical likelihood ratio function to set confidence intervals
appears to be Thomas and Grunkemeier (1975). Their application was to survival
probabilities estimated by the Kaplan-Meier cure. Thomas and Grunkemeier pro-
vide a heuristic argument to show that empirical likelihood ratio intervals for a
survival probability based on the x? distribution have asymptotically correct cov-
erage levels outside [0,1]. This is especially appealing for survival probabilities
near 0 or 1. Cox and Oakes (1984, Section 4.3) independently obtained the same
intervals.

The empirical likelihood has parallels in the bootstrap literature. The Bayesian

n
bootstrap of Rubin (1981) generated reweighted empirical distributions Z 9i0z,,
=1

where the g;’s are positive random variables with unit sum. In the simplest case
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they follow a unit Dirichlet distribution and may be sampled by taking the n gaps
formed by 0, 1 and n — 1 independent U0, 1] random variables.

Owen (1991) and Chen (1993, 1994) applied the empirical likelihood to linear
regression models, and proved that the empirical log-likelihood ratio is asymp-
totically chi-squared. This leads a direct use of limit distribution to construct
confidence regions/intervals of regression parameters with asymptotically correct
coverage probabilities. Kolaczyk (1994) made further extensions to generalized
linear models. Qin and Lawless (1994) developed an empirical likelihood method-
ology based on general estimating equations. Wang and Jing (1999) and Shi and
Lau (2000) considered a partial linear model with fixed design: see also Diciccio et
al. (1991), Chen and Qin (1993), Qin (1993), Qin and Lawless (1994), Kitamura
(1997) and Zhang (1997). Xue and Zhu (2006) and Zhu and Xue (2006) investi-
gated the empirical likelihood confidence regions of the parameters in a single-index
model and a partially linear single-index model. Kernel methods for the empirical
likelihood have been looked at earlier, see, for example, Hall and Owen (1993),
Chen and Qin (2000), Li and Van Keilegom (2002) and Owen (2001, Chapter 5).
Xue and Zhu (2007a) investigated the local empirical likelihood-based inference for
a varying coefficient model with longitudinal data. Xue and Zhu (2007b) inves-
tigated the issues of estimation and confidence region construction for a partially
linear model with longitudinal data. Stute, Xue and Zhu (2007) studied inference
in parametric-nonparametric errors-in-covariables regression models using an em-
pirical likelihood approach based on validation data. Using local polynomial fitting,
Xue (2010) studied construction of pointwise confidence intervals and simultaneous
confidence bands for the nonparametric regression functions and their derivatives
under clustered data. Under missing data, Xue (2009a, b, c) and Xue (2010) stud-
ied the nonparametric regression model, the linear model and the partially linear
model. The other related works are: Diciccio et al. (1991), Chen and Hall (1993),
Li (1995), Chen and Sitter (1999), Wang and Rao (2001, 2002a, b). Peng (2004),
Wang, Linton and Hérdle (2004), Xue and Zhu (2005), and Qin and Zhang (2007),
among others. Owen (2001) is a fairly comprehensive reference book. Existing
methods provide a valuable approach for confidence interval construction and tests
in a nonparametric context.

1.2 Bootstrap method

Efron (1979) introduced a very general resampling procedure, called Bootstrap,
for estimating distributions of statistics based on independent observations. The
procedure is more widely applicable and has more sound of theoretical basis than
the popular Quenoille-Tukey jackknife. Efron investigated a number of statistical
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problems and demonstrated the feasibility of the bootstrap method. In past three
decades, the bootstrap quantiles are frequently used for the purpose of constructing
bootstrap-based confidence intervals. Like any other estimation procedures, the
accuracy of the quantile estimators produced by the bootstrap method needs to be
assessed.

A formal description of the bootstrap goes as follows. Let Xi,---,X, be a
random sample of size n from a population with unknown distribution F, and let
T, = Tn(X1, -+ ,Xn) be a statistic of interest. Let Fj, be the empirical distri-
bution function of X and let X{,---, X be a random sample drawn from Fj,.
{X1, -+ ,Xn} is called a bootstrap sample. The bootstrap method estimates the
distribution of 7, through the conditional distribution of Ty = Tn(X7, -+, X}),
given X1, - Xn. This conditional distribution is called the bootstrap distribution
of Ty, and T is called the bootstrap statistic of T,,. In particular, the boot-
strap estimates the variance of T, by the conditional variance of T;. Assume that
H,(z) = P(Rn < z), where Ry, = Rn(Ty, F) is a real-valued functional of F.
Then, a bootstrap estimator of H,(z) = P*(R}, < =), where R}, = Rn(Tj, F) and
P* is the bootstrap conditional probability given X3, -, X,. Since the bootstrap
samples are generated from Fy, this method is called the nonparametric bootstrap.
Note that H,(z) will depend on F, and hence itself is a random variable. To be
specific, Hn(z) will change as the data {z1,---,%s} change. Recall that a boot-
strap analysis is run to assess the accuracy of some primary statistical results. This
produces bootstrap statistics, like standard errors or confidence intervals, which are
assessments of error for the primary results.

Now we rewrite the above (generic) nonparametric bootstrap procedure into
the following steps as follows. Refer to Efron and Tibshirani (1993) for detailed
discussions.

Step 1. Construct an empirical probability distribution, Fy, from the sample
by placing a probability of 1/n at each point, Xi,---,Xn of the sample. This
is the empirical distribution function of the sample, which is the nonparametric
maximum likelihood estimate of the population distribution, F.

Step 2. From the empirical distribution function, F,,, draw a random sample of
size n with replacement. This is a resample.

Step 3. Calculate the statistic of interest, Ty, for this resample, yielding T7%.

Step 4. Repeat steps 2 and 3 B times, where B is a large number, in order to
create B resamples. The practical size of B depends on the tests to be run on the
data. Typically, B is at least equal to 1000 when an estimate of confidence interval
around T, is required.

Step 5. Construct the relative frequency histogram from the B number of T,’s



