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Preface

The manuscript of this book was written in 1998-1999. At that time, I was
invited to give a series of talks at the Morningside Center of Mathematics
on Deligne’s proof of the Weil conjecture. To prepare the talks, I wrote
the book [Fu (2006)] on algebraic geometry covering the main materials in
[EGA] I III, and the current book covering the main materials in [SGA] 1,
4, 4%, and 5 related to etale cohomology theory. I hope this book provides
adequate preparation for reading more advanced papers such as [Beilin-
son, Bernstein and Deligne (1982)], [Deligne (1974)], [Deligne (1980)] and
[Laumon (1987)].

The prerequisites for reading this book are [Fu (2006)] and the book
[Matsumura (1970)] on commutative algebra. As [Fu (2006)] may not be
widely available, whenever a result from it is quoted, a corresponding result
in [EGA] or [Hartshorne (1977)] is also indicated. A result used in this
book but not covered in these books is Artin’s approximation theorem
[Artin (1969)]. A nice account can be found in [Bosch, Liitkebohmert and
Raynaud (1990)].

At the beginning of each section, I give a list of references related to
the content of this section. I strongly encourage the reader to go through
these references, especially [SGA], for more general and thorough treatment.
When I was a graduate student, the books [Freitag and Kiehl (1988)] and
[Milne (1980)] on etale cohomology theory gave me great help for reading
[SGA]. It is inevitable that some treatments in this book are influenced by
them.

I would like to thank Jiangxue Fang, Enlin Yang, Takeshi Saito and
Hao Zhang for pointing out errors, misprints, and improvement of an earlier
edition of this book. During the preparation of the book, I am supported
by the Qiu Shi Science & Technologies Foundation and the NSFC.

Lei Fu
Chern Institute of Mathematics
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Chapter 1

Descent Theory

Unless otherwise stated, rings in this book are commutative with the iden-
tity element 1, and homomorphisms of rings map 1 to 1. For any ring
A and any A-module M, we assume 1.z = z for all x € M. For any
scheme (S, 0g) and any s € S, denote the maximal ideal of &s by ms,
and denote the residue field of &s s by k(s). For any nonnegative integer
n, denote by A% the affine space Spec Os|t,...,t,] over S, and by P% the
projective space Proj @slty,t1,...,t,] over S. We identify A% with the
open subscheme Spec ﬁg[%, ceey ’i—g] of P%.

1.1 Flat Modules

([SGA 1] IV 1.)

Let A be a ring. An A-module M is called flat if the functor N — M ® 4 N
on the category of A-modules is exact. We also say that M is flat over A, or
A-flat. Let A — B be a homomorphism of rings. If M is a flat A-module,
then B ® 4 M is a flat B-module. If N is a flat B-module, and B is flat
over A, then N is flat over A.

Proposition 1.1.1. Let A be a ring and M an A-module. The following
conditions are equivalent:

(i) M is flat.

(ii) For any A-modules N, we have Tor?(M,N) =0 for all i > 1.

(iii) For any finitely generated A-module N, we have Tor(M,N) = 0
for all i > 1.

(iv) For any A-module N, we have Tor{'(M,N) = 0.

(v) For any finitely generated A-module N, we have Tor{'(M,N) = 0.

(vi) For any ideal I of A, we have Tor{(M,A/I) = 0.

1



2 Etale Cohomology Theory

(vii) For any finitely generated ideal I of A, we have Tor (M, A/I) = 0.
(viii) For any ideal I of A, the canonical homomorphism
IT®Rsa M — M, a®xrax

is injective, that is, it induces an isomorphism I @4 M = I M.
(ix) For any finitely generated ideal I of A, the canonical homomorphism

IRAM— M, a®xw— ar
1S injective.

Let M be a flat A-module, N an A-module, N’ and N” submodules
of N. Then M ®4 N’ and M ®4 N” can be regarded as submodules of
M ® 4 N. We have

M®a(NNNN")Y2(MeisN)N(M®aN"),
M®a (N +N") 2 (M®aN)+(MoaN"),

where on the right-hand side, we take the intersection and the summation
inside M @4 V.

Proposition 1.1.2.

(i) Let A be a ring and let S be a multiplicative subset in A. Then S~'A
is flat over A. If M is a flat A-module, then S™*M is a flat S~ A-module.

(ii) Let A — B be a homomorphism of rings, let S (resp. T) be a
multiplicative subset in A (resp. B) such that the image of S in B is
contained in T, and let N be a B-module. If N is flat over A, then TN
is flat over A and over S~'A.

(iii) Let A — B be a homomorphism of rings and let N be a B-module.
Suppose for every maximal ideal n of B, Ny is flat over A. Then N is flat
over A.

Proof. Let us prove (ii). For any A-module M, we have
T IN®@sM2T YN ®sM).

If N is flat over A, the functor T~1(N ® 4 —) on the category of A-modules
is exact. It follows that T~ !N is flat over A. By (i), S~!T !N is flat over
S'A. We have S™'T-IN = T-!N. O

Proposition 1.1.3.
(i) Let A be a ring and let M be a flat A-module. If a € A is not a zero
divisor, then the canonical homomorphism

M — M, z— ax
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1s injective. In particular, if A is an integral domain, then M has no
torston.

(ii) Let A be an integral domain such that An s a discrete valuation
ring for every maximal ideal m of A. Then an A-module M is flat if and
only if it has no torsion.

Proof. Let us prove the “if” part of (ii). Suppose M has no torsion. To
prove M is A-flat, it suffices to show M, is Ay-flat for any maximal ideal
m of A. Let I be an ideal of Ay. By our assumption, [ is principal, say
generated by some element r € A. The canonical map

An— 1, a—ra
is an isomorphism. So we have an isomorphism
Mo S I®4, My, To7®1.
The composite of this isomorphism with the canonical homomorphism
I®a, My = My, a®@z— az
is
My — My, x— 11,

which is injective since M has no torsion. We then apply 1.1.1 (viii). [

1.2 Faithfully Flat Modules

([SGA 1] IV 2-4.)

Let 4 and & be two categories, and let F': € — 2 be a functor. We say
that F'is faithful if for all objects X and Y in %, the map

Homy (X,Y) — Homg(F(X),F(Y)), f— F(f)

is injective. If ¥ and & are additive categories and F' is an additive functor,
then the above condition is equivalent to saying that the condition F'(u) = 0
implies the condition u = 0 for any u € Homg (X,Y). In this case, the
condition F(X) = 0 implies the condition X = 0 for any object X in €.
Indeed, we have F(idx) = idp(x) = 0, and hence idx = 0.

A functor F : ¢ — Z is called fully faithful if the map

Homy(X,Y) — Homg (F(X),F(Y)), f~— F(f)

is bijective for all objects X,Y € ob% . I is called essentially surjective if
for any object Z in 2, there exists an object X in % such that F(X) 2 Z.
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We say that I’ is an equivalence of categories if F' is fully faithful and
essentially surjective.

Proposition 1.2.1. Let € and 2 be abelian categories and let F : € — &
be an additive functor. The following conditions are equivalent:

(i) F is exact and faithful.

(ii) A sequence

M - M- M

in € is exact if and only if
FM') - F(M) - F(M")

15 exact.

(iii) F' is ezact and the condition F(X) = 0 implies the condition X = 0.

Suppose furthermore that there exists a family of nonzero objects {Z;} in
% such that for any nonzero object X in %, there exist some Z; and some
object Y in € admitting a monomorphism Y — X and an epimorphism
Y — Z;. Then the above conditions are equivalent to the following:

(iv) F is exact and F(Z;) # 0 for all Z;.

Proof.
(i)=(ii) Given a sequence
M5 M5 M
in €, suppose
FM) " P 8 R
is exact. We have F(vu) = F(v)F(u) = 0. Since F' is faithful, we have
vu = 0. Hence imu C kerv. Since F' is exact, we have
F(kerv/imu) = F(kerv)/F(imu) = ker F(v)/im F(u) = 0.
Hence ker v/imu = 0, that is, kerv = im .
(ii)=-(iii) If F(X) =0, then
F(0) - F(X) — F(0)

is exact. Our condition implies that

0—+X—=0

is exact. So X = 0.
(ili)=(i) Let v : X — Y be a morphism in ¥. If F(u) = 0, then
im F(u) = 0. Since F' is exact, we have F(imu) = im F'(u) = 0. By our

condition, we have imu = 0, that is, u = 0.
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(iii)=> (iv) is obvious. ‘

(iv)=-(iii) For any nonzero object X in €, choose an object Y admitting
a monomorphism Y — X and an epimorphism Y — Z;. Then F(Y) —
F(Z;) is an epimorphism. As F(Z;) # 0, we have F(Y) # 0. The morphism
F(Y) - F(X) is a monomorphism. It follows that F(X) # 0. O

Corollary 1.2.2. Let A be a ring and M an A-module. The following
conditions are equivalent:

(i) The functor N — M ®4 N on the category of A-modules is eract
and faithful.

(i1) A sequence of A-modules
N' —+ N — N"
is exact if and only if
MsaN 5> M®sN— M@y N

15 ezact.

(iii) M is flat and the condition M ®4 N = 0 implies the condition
N =0.

(iv) M is flat and M @4 A/m # 0 for any mazimal ideal m of A.

When M satisfies the above equivalent conditions, we say that M is
faithfully flat.

Corollary 1.2.3. Let (A,m) — (B,n) be a local homomorphism of local
rings and let M be a finitely generated B-module. Then M is faithfully flat
over A if and only if it is flat over A and nonzero.

Indeed, by Nakayama’s lemma, the condition M ® 4 A/m # 0 is equiv-
alent to the condition M # 0.

Proposition 1.2.4. Let A — B be a homomorphism of rings. If there
exists a B-module M faithfully flat over A, then the map Spec B — Spec A
15 onto.

Proof. It suffices to show that for any p € Spec A, the fiber Spec (B ® 4
Ay /pA,) of the map Spec B — Spec A over p is not empty, or equivalently,
B ®4 Ap/pAp is nonzero. Indeed, since M is faithfully flat over A, M ®4
A, /pA, is faithfully flat over A, /pA,. This implies that M ®4 A, /pA, # 0.
But M ®4 Ap/pAp isa (B®4 Ap/pA,)-module. So B®a A, /pAp, #0. O
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Corollary 1.2.5. Let ¢ : A — B be a homomorphism of rings and let M
be a finitely generated B-module flat over A. Suppose Supp M = Spec B.
Then for any p € SpecA, and any prime ideal q € Spec B which is minimal
among those prime ideals of B containing pB, we have ¢~1(q) = p. In
particular, for any minimal prime ideal q of B, ¢~ '(q) is a minimal prime

ideal of A.

Proof. By 1.2.3, M is faithfully flat over Ay-1(q). By 1.2.4, the map
Spec By — Spec Ay-1(q) is onto. We have pAs-1(q) € Spec Ag-1(q). By
the minimality of g, the preimage of pAy-1(4) in Spec By must be qBg. It
follows that ¢~ 1(q) = p. O

Proposition 1.2.6. Let ¢ : A — B be a homomorphism of rings. The
following conditions are equivalent:

(i) B is faithfully flat over A.

(i1) B is flat over A and Spec B — Spec A is onto.

(iii) B is flat over A, and for every maximal ideal m of A, there ewists
a mazimal ideal n of B such that ¢~ '(n) = m.

(iv) B is flat over A, and for any A-module M, the canonical homo-
morphism

M—>M@asB, r—=z®l1
15 injective.
(v) For every ideal I of A, the canonical homomorphism
I®osB— B, z2b—bx

is injective and ¢~ (IB) = I.
(vi) ¢ is injective and coker ¢ is flat over A.

Proof.

(i)=(ii) follows from 1.2.4.

(ii)=(iii) Let m be a maximal ideal of A. Suppose Spec B — Spec A is
onto. Then there exists a prime ideal q of B such that ¢~'(q) = m. Let n
be a maximal ideal of B containing q. Then ¢—!(n) = m.

(iii)=-(i) For any maximal ideal m of 4, let n be a maximal ideal of B
such that ¢~'(n) = m. We have B ®4 A/m = B/mB, and B/mB has a
quotient B/n which is nonzero. It follows that B @4 A/m # 0. We then
apply 1.2.2.

(i)=(iv) Suppose B is faithfully flat over A. To show M — M ®4 B is
injective, it suffices to show that the homomorphism

M@oAaB > MeAaB®R4B, 20b—=2R1&5b



