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PREFACE

With the publication of the fortieth volume of Progress in Optics, a significant
milestone has been reached. The first volume was published in 1961, a year
after the invention of the laser, an event which triggered a wealth of new and
exciting developments. Many of them have been reported in the 228 review
articles published in this series since its inception.

The present volume contains six review articles on a variety of subjects
of current research interests. The first, by T.R. Wolinski, is concerned with
polarimetric optical fibers and sensors. These devices have created a novel
generation of powerful sensory-oriented techniques. The article reviews the main
efforts and achievements in this field within the last two decades. It discusses
the physical origin of polarization phenomena in birefringent fibers, both at
the fundamental and the applied levels, and various deformation effects due to
pressure, strain, twist and temperature on propagation of the lowest-order mode
in fibers.

The second article, by J. Tanida and Y. Ichioka, presents a review of recent
researches on digital optical computing. After introducing the basic concepts
needed for understanding the developments in this field, some feasibility
experiments as well as software studies are discussed.

The article by V. Pefinova and A. LuksS which follows, deals largely with
photodetection from the standpoint of the theory of open systems, bordering
on novel techniques for testing irreversibility via quantum trajectories. Both
destructive and non-destructive models of the process of photodetection are
discussed.

The fourth article, by Z. Zalevsky, D. Mendlovic and A.W. Lohmann, presents
an account of modern theories of resolution in optical systems, based on the
concepts of communication theory.

The next article, by J. Turunen, M. Kuittinen and F. Wyrowski, is concerned
with the design of microstructured optical elements by the use of electromagnetic
diffraction theory. Such an approach is required when the paraxial approximation
is inadequate to describe their performance, or when it becomes necessary to take
into account the state of polarization of the light. Diffractive elements based on
linear or modulated gratings which operate in zero-order, first-order and multi-
order modes are discussed.



vi PREFACE

The concluding article by Z. Ficek and H.S. Freedhoff deals with the theory
underlying the interaction of an atom with an intense polychromatic driving
field, with particular reference to certain experiments. Several different systems
which have been studied to date are discussed, including subharmonic resonances
in the absorption spectrum of a strong probe, the fluorescence, near-resonance
absorption and the Autler—Townes absorption by the entangled driven systems.

In publishing this fortieth volume it is appropriate to acknowledge the
substantial help which I have received over the years. There are too many persons
to acknowledge individually. Three of them, however, deserve special mention:
Mr. Jeroen Soutberg, director of ISYS Prepress Services in the Netherlands, is
largely responsible for the production of these volumes. He must be credited
for consistently maintaining the highest possible standards. I wish to thank
Dr. M. Suhail Zubairy, one of my former students and now Professor at a
University in Islamabad, Pakistan for preparing, for many years, the subject
indexes for these volumes. I also wish to express my appreciation to Dr. Joost
Kircz, a former publisher of Elsevier, who provided much help and advice with
the publication of earlier volumes in this series. Finally, I wish to thank members
of the Editorial Advisory Board of Progress in Optics for their part in having
made this series such a successful enterprise.

Emil Wolf
Department of Physics and Astronomy
University of Rochester
Rochester, New York 14627, USA

October 1999
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§ 1. Introduction

Over the last two decades significant progress has occurred in optical fiber
technologies from the use of intensity (amplitude) modulation to that of
modulation of the optical polarization of the electromagnetic wave propagating
along a fiber. At the same time new possibilities have opened up for both optical
communication and also optical fiber sensors and systems. The key to successful
construction of these new sensing devices and coherent communication systems
is in high-performance polarimetric optical fibers and sensors. They are mostly
based on highly birefringent (HB), polarization-maintaining (PM) fibers, which
have aroused great interest from both theoretical and practical points of view.
Although polarization effects in optical fibers initially played a minor role in
the development of lightwave systems, their importance is still growing, due to
an enormous increase in optical path lengths that can be achieved with single-
mode fibers and also to an increase in bit rates in digital systems, as reviewed
by Poole and Nagel [1997]. These two events recently precipitated a rediscovery
of polarization phenomena in lightwave systems.

Before 1980 it was impossible to exploit the polarization modulation in a fiber
for sensing applications, since the conventional single-mode fibers manufactured
for telecommunication use do not hold the optical wave amplitude in a particular
polarization state. The appearance of HB fibers created a new generation of
fiber-optic sensors known as polarimetric fiber sensors, which use polarization
(phase) modulation within these fibers or at their output due to various external
perturbations describing the physical environment.

The aim of this chapter is to review the foremost achievements and efforts in
research activities related to the development of a new generation of polarimetric
optical fibers and sensors at both fundamental and applied levels during the
past twenty years. The review underlines the physical origin of the perturbations
(e.g., those induced by pressure, strain, bend, twist, temperature) on the lowest-
order mode propagation in HB polarization-maintaining fibers together with their
impact on applications in optical fiber sensors and systems.

Several papers and chapters in textbooks have been published on polarization-
maintaining fibers and polarization effects in fibers, for example, by Kaminow
[1981], Payne, Barlow and Ramskov-Hansen [1982], Rashleigh [1983a], Noda,



