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PREFACE

This book presents original studies on the leading edge of linear algebra. Each chap-
ter has been carefully selected in an attempt to present substantial research results across a
broad spectrum. The main goal of Chapter One is to define and investigate the restricted
generalized inverses corresponding to minimization of constrained quadratic form. As
stated in Chapter Two, in systems and control theory, Linear Time Invariant (LTI) descrip-
tor (Differential-Algebraic) systems are intimately related to the matrix pencil theory. A
review of the most interesting properties of the Projective Equivalence and the Extended
Hermite Equivalence classes is presented in the chapter. New determinantal representa-
tions of generalized inverse matrices based on their limit representations are introduced in
Chapter Three. Using the obtained analogues of the adjoint matrix, Cramer’s rules for the
least squares solution with the minimum norm and for the Drazin inverse solution of sin-
gular linear systems have been obtained in the chapter. In Chapter Four, a very interesting
application of linear algebra of commutative rings to systems theory, is explored. Chap-
ter Five gives a comprehensive investigation to behaviors of a general Hermitian quadratic
matrix-valued function by using ranks and inertias of matrices. In Chapter Six, the theory of
triangular matrices (tables) is introduced. The main “characters” of the chapter are special
triangular tables (which will be called triangular matrices) and their functions paradetermi-
nants and parapermanents. The aim of Chapter Seven is to present the latest developments
in iterative methods for solving linear matrix equations. The problems of existence of com-
mon eigenvectors and simultaneous triangularization of a pair of matrices over a principal
ideal domain with quadratic minimal polynomials are investigated in Chapter Eight. Two
approaches to define a noncommutative determinant (a determinant of a matrix with non-
commutative elements) are considered in Chapter Nine. The last, Chapter 10, is an example
of how the methods of linear algebra are used in natural sciences, particularly in chemistry.
In this chapter, it is shown that in a First Order Chemical Kinetics Mechanisms matrix,
all columns add to zero, all the diagonal elements are non-positive and all the other ma-
trix entries are non-negative. As a result of this particular structure, the Gershgorin Circles
Theorem can be applied to show that all the eigenvalues are negative or zero.

Minimization of a quadratic form (z, T'z) + (p, ) + a under constraints defined by
a linear system is a common optimization problem. In Chapter 1, it is assumed that the
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operator 7' is symmetric positive definite or positive semidefinite. Several extensions to
different sets of linear matrix constraints are investigated. Solutions of this problem may
be given using the Moore-Penrose inverse and/or the Drazin inverse. In addition, several
new classes of generalized inverses are defined minimizing the seminorm defined by the
quadratic forms, depending on the matrix equation that is used as a constraint.

A number of possibilities for further investigation are considered.

In systems and control theory, Linear Time Invariant (LTI) descriptor (Differential-
Algebraic) systems are intimately related to the matrix pencil theory. Actually, a large
number of systems are reduced to the study of differential (difference) systems S (F, G) of
the form:

S (F,G) : Fz(t) = Gz(t) (orthe dual Fz = Gz(t)),

and
S (Fa G) : F$k+1 — G.’L'k (OI' the dual F:L‘k = ka.+1) , F, G e (me"

and their properties can be characterized by the homogeneous pencil sF'— $G. An essential
problem in matrix pencil theory is the study of invariants of sF'—3$G under the bilinear strict
equivalence. This problem is equivalent to the study of complete Projective Equivalence
(PE), &p, defined on the set C, of complex homogeneous binary polynomials of fixed
homogeneous degree . For a f (s, 8) € C,, the study of invariants of the PE class Ep is
reduced to a study of invariants of matrices of the set CF*2 (for k > 3 with all 2 x 2-minors
non-zero) under the Extended Hermite Equivalence (EHE), £,j. In Chapter 2, the authors
present a review of the most interesting properties of the PE and the EHE classes. Moreover,
the appropriate projective transformation d € RGL (1, C/R) is provided analytically ([1]).

By a generalized inverse of a given matrix, the authors mean a matrix that exists for a
larger class of matrices than the nonsingular matrices, that has some of the properties of the
usual inverse, and that agrees with inverse when given matrix happens to be nonsingular. In
theory, there are many different generalized inverses that exist. The authors shall consider
the Moore Penrose, weighted Moore-Penrose, Drazin and weighted Drazin inverses.

New determinantal representations of these generalized inverse based on their limit rep-
resentations are introduced in Chapter 3. Application of this new method allows us to obtain
analogues classical adjoint matrix. Using the obtained analogues of the adjoint matrix, the
authors get Cramer’s rules for the least squares solution with the minimum norm and for the
Drazin inverse solution of singular linear systems. Cramer’s rules for the minimum norm
least squares solutions and the Drazin inverse solutions of the matrix equations AX = D,
XB = D and AXB = D are also obtained, where A, B can be singular matrices of
appropriate size. Finally, the authors derive determinantal representations of solutions of
the differential matrix equations, X’ + AX = B and X’ + XA = B, where the matrix A
is singular.

Many physical systems in science and engineering can be described at time ¢ in terms
of an n-dimensional state vector z(t) and an m-dimensional input vector u(t), governed by
an evolution equation of the form z/(t) = A - z(t) + B - u(t), if the time is continuous, or
z(t+1) = A-z(t) + B-u(t) in the discrete case. Thus, the system is completely described
by the pair of matrices (A, B) of sizes n x n and n X m respectively.

In two instances feedback is used to modify the structure of a given system (A, B): first,
A can be replaced by A + BF', with some characteristic polynomial that ensures stability
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of the new system (A + BF, B); and second, combining changes of bases with a feedback
action A — A + BF one obtains an equivalent system with a simpler structure.

Given a system (A, B), let (A, B) denote the set of states reachable at finite time when
starting with initial condition z(0) = 0 and varying u(t), i.e., (A, B) is the right image of
the matrix [B|AB|A%B]| - - -]. Also, let Pols(A, B) denote the set of characteristic polyno-
mials of all possible matrices A + BF, as F varies.

Classically, (A, B) have their entries in the field of real or complex numbers, but the
concept of discrete-time system is generalized to matrix pairs with coefficients in an arbi-
trary commutative ring R. Therefore, techniques from Linear Algebra over commutative
rings are needed.

In Chapter 4, the following problems are studied and solved when R is a commutative
von Neumann regular ring:

e A canonical form is obtained for the feedback equivalence of systems (combination
of basis changes with a feedback action).

e Given a system (A, B), it is proved that there exist a matrix F' and a vector u such
that the single-input system (A + BF, Bu) has the same reachable states and the
same assignable polynomials as the original system, i.e. (A + BF, Bu) = (A, B)
and Pols(A + BF, Bu) = Pols(A, B).

Chapter 5 gives a comprehensive investigation to behaviors of a general Hermitian
quadratic matrix-valued function

&(X)=(AXB+C)M(AXB+C)*+D

by using ranks and inertias of matrices. The author first establishes a group of analytical
formulas for calculating the global maximal and minimal ranks and inertias of ¢(X ). Based
on the formulas, the author derives necessary and sufficient conditions for ¢(X) to be a
positive definite, positive semi-definite, negative definite, negative semi-definite function,
respectively, and then solves two optimization problems of finding two matrices XorX
such that ¢(X) = ¢()/(:) and ¢(X) < ¢(X) hold for all X, respectively. As extensions,
the author considers definiteness and optimization problems in the Lowner sense of the
following two types of multiple Hermitian quadratic matrix-valued function

k k *
(X, .o, X)) = (ZAiXiB,JrC)M(ZA,;X,-B;JrC) + D,

=1 1=1

k
Y(X1,..., Xx) =Y (AiXiB; + C; )M;( A;X;Bi + C;)* + D.

i=1

Some open problems on algebraic properties of these matrix-valued functions are men-
tioned at the end of Chapter 5.

In Chapter 6, the author considers elements of linear algebra based on triangular tables
with entries in some number field and their functions, analogical to the classical notions of
a matrix, determinant and permanent. Some properties are investigated and applications in
various areas of mathematics are given.
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The aim of Chapter 7 is to present the latest developments in iterative methods for solv-
ing linear matrix equations. The iterative methods are obtained by extending the methods
presented to solve the linear system Az = b. Numerical examples are investigated to con-
firm the efficiency of the methods.

The problems of existence of common eigenvectors and simultaneous triangularization
of a pair of matrices over a principal ideal domain with quadratic minimal polynomials are
investigated in Chapter 8. The necessary and sufficient conditions of simultaneous trian-
gularization of a pair of matrices with quadratic minimal polynomials are obtained. As a
result, the approach offered provides the necessary and sufficient conditions of simultane-
ous triangularization of pairs of idempotent matrices and pairs of involutory matrices over
a principal ideal domain.

Since product of quaternions is noncommutative, there is a problem how to determine
a determinant of a matrix with noncommutative elements (it’s called a noncommutative de-
terminant). The authors consider two approaches to define a noncommutative determinant.
Primarily, there are row — column determinants that are an extension of the classical def-
inition of the determinant; however, the authors assume predetermined order of elements
in each of the terms of the determinant. In Chapter 9, the authors extend the concept of
an immanant (permanent, determinant) to a split quaternion algebra using methods of the
theory of the row and column determinants.

Properties of the determinant of a Hermitian matrix are established. Based on these
properties, analogs of the classical adjont matrix over a quaternion skew field have been
obtained. As a result, the authors have a solution of a system of linear equations over a
quaternion division algebra according to Cramer’s rule by using row—column determinants.

Quasideterminants appeared from the analysis of the procedure of a matrix inversion.
By using quasideterminants, solving of a system of linear equations over a quaternion divi-
sion algebra is similar to the Gauss elimination method.

The common feature in definition of row and column determinants and quasidetermi-
nants is that the authors have not one determinant of a quadratic matrix of order n with
noncommutative entries, but certain set (there are n? quasideterminants, n row determi-
nants, and n column determinants). The authors have obtained a relation of row-column
determinants with quasideterminants of a matrix over a quaternion division algebra.

First order chemical reaction mechanisms are modeled through Ordinary Differential
Equations (O.D.E.) systems of the form: , being the chemical species concentrations vector,
its time derivative, and the associated system matrix.

A typical example of these reactions, which involves two species, is the Mutarotation
of Glucose, which has a corresponding matrix with a null eigenvalue whereas the other one
is negative.

A very simple example with three chemical compoundsis grape juice, when it is con-
verted into wine and then transformed into vinegar. A more complicated example,also
involving three species, is the adsorption of Carbon Dioxide over Platinum surfaces. Al-
though, in these examples the chemical mechanisms are very different, in both cases the
O.D.E. system matrix has two negative eigenvalues and the other one is zero. Consequently,
in all these cases that involve two or three chemical species, solutions show a weak stability
(i.e., they are stable but not asymptotically). This fact implies that small errors due to mea-
surements in the initial concentrations will remain bounded, but they do not tend to vanish
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as the reaction proceeds.

In order to know if these results can be extended or not to other chemical mechanisms,
a possible general result is studied through an inverse modeling approach, like in previous
papers. For this purpose, theoretical mechanisms involving two or more species are pro-
posed and a general type of matrices - so-called First Order Chemical Kinetics Mechanisms
(F.O.C.K.M.) matrices - is studied from the eigenvalues and eigenvectors view point.

Chapter 10 shows that in an F.O.C.K.M. matrix all columns add to zero, all the diagonal
elements are non-positive and all the other matrix entries are non-negative. Because of this
particular structure, the Gershgorin Circles Theorem can be applied to show that all the
eigenvalues are negative or zero. Moreover, it can be proved that in the case of the null
eigenvalues - under certain conditions - algebraic and geometric multiplicities give the same
number.

As an application of these results, several conclusions about the stability of the O.D.E.
solutions are obtained for these chemical reactions, and its consequences on the propagation
of concentrations and/or surface concentration measurement errors, are analyzed.
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Chapter 1

MINIMIZATION OF QUADRATIC FORMS
AND GENERALIZED INVERSES

Z1, %

Predrag S. Stanimirovi¢'*, Dimitrios Pappas®' and Vasilios N. Katsikis**
University of Ni§, Faculty of Sciences and Mathematics, Ni§, Serbia
2 Athens University of Economics and Business
Department of Statistics, Athens, Greece
3National and Kapodistrian University of Athens, Department of Economics
Division of Mathematics and Informatics, Athens, Greece

Abstract

Minimization of a quadratic form (z, Tz) + (p, x) + a under constraints defined by
a linear system is a common optimization problem. It is assumed that the operator 7T’
is symmetric positive definite or positive semidefinite. Several extensions to different
sets of linear matrix constraints are investigated. Solutions of this problem may be
given using the Moore-Penrose inverse and/or the Drazin inverse. In addition, several
new classes of generalized inverses are defined minimizing the seminorm defined by
the quadratic forms, depending on the matrix equation that is used as a constraint.
A number of possibilities for further investigation are considered.

Keywords: Quadratic functional, quadratic optimization, generalized inverse, Moore-
Penrose inverse, Drazin inverse, outer inverse, system of linear equations, matrix equation,
generalized inverse solution, Drazin inverse solution

AMS Subject Classification: 90C20, 15A09, 15A24, 11E04, 47N10
1. Introduction

It is necessary to mention several common and usual notations. By R™*™ (resp. C"*™)
we denote the space of all real (resp. complex) matrices of dimension m x n. If A €

*E-mail address: pecko@pmf.ni.ac.rs
YE-mail address: pappdimitris @ gmail.com
YE-mail address: vaskatsikis@econ.uoa.gr
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R™X™ (resp. C™*"), by AT € R"™ ™ (resp. A* € R™"*™) is denoted the transpose (resp.
conjugate and transpose) matrix of A. As it is usual, by AV/(A) we denote the null-space of
A, by R(A) the range of A, and ind(A) will denote the index of the matrix A.

1.1. Quadratic Functions, Optimization and Quadratic Forms

Definition 1.1. A square matrix A € C"*" (resp. A € R"*") is:

1) Hermitian (Symmetric) matrix if A* = A (AT = A),

2) normal, if A*A = AA* (ATA = AAT),

3) lower-triangular, if a;; = 0 for i < j,

4) upper-triangular, if a;; = 0 fori > j,

5) positive semi-definite, if Re (x*Ax) > 0 for all x € C"¥'. Additionally, if it holds
Re (z*Ax) > 0 forall z € C"¥1 \ {0}, then the matrix A is positive definite.

6) Unitary (resp. orthogonal) matrix A is a square matrix whose inverse is equal to its
conjugate transpose (resp. transpose), A~' = A* (resp. A= = A7),

Definition 1.2. Ler A € C"™*". A real or complex scalar A which satisfies the following
equation

Az = Az, ie, (A—A)xz=0,
is called an eigenvalue of A, and x is called an eigenvector of A corresponding to .

The eigenvalues and eigenvectors of a matrix play a very important role in matrix theory.
They represent a tool which enables to understand the structure of a matrix. For example,
if a given square matrix of complex numbers is self-adjoint, then there exist basis of C™
and C™, consisting of distinct eigenvectors of A, with respect to which the matrix A can
be represented as a diagonal matrix. But, in the general case, not every matrix has enough
distinct eigenvectors to enable its diagonal decomposition. The following definition, given
as a generalization of the previous one, is useful to resolve this problem.

Definition 1.3. Ler A € C™*™ and \ is an eigenvalue of A. A vector x is called generalized
eigenvector of A of grade p corresponding to X\, or \-vector of A of grade p, if it satisfies
the following equation

(A= APz = 0.

Namely, for each square matrix there exists a basis composed of generalized eigenvec-
tors with respect to which, a matrix can be represented in the Jordan form. Corresponding
statement is stated in the following proposition.

Proposition 1.1. [1] (The Jordan decomposition). Let the matrix A € C™"*™ has p distinct
eigenvalues {\1, Aa, ..., A\p}. Then A is similar to a block diagonal matrix J with Jordan
blocks on its diagonal, i.e., there exists a nonsingular matrix P which satisfies

Iy (A1) 0 0
0 Ju(h) ... 0
AP = PJ — , k2 (Aa) _ _ ,

0 0 ... Jk(M)
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where the Jordan blocks are defined by

Aio 10 .0

0 A 1 0
Jk'i ( AL) = . :

0 0 A1

and the matrix J is unique up to a rearrangement of its blocks.

The following Proposition 1.2 gives us an alternative way to obtain even simpler decom-
position of the matrix A, than the one given with the Jordan decomposition, but with respect
to a different basis of C™. This decomposition is known as the Singular Value Decompo-
sition (SVD shortly) and it is based on the notion of singular values, given in Definition
1.4.

Definition 1.4. Ler A € C"™*" and {\y, ..., \,} be the nonzero eigenvalues of AA*. The
singular values of A, denoted by o;(A), i = 1,...,pare defined by
ai(A) =X =1

Proposition 1.2. (Singular value decomposition) [1] Let A € R™*" be a matrix with
singular values {01, . . ., 0.}. Then there exist orthogonal matrices U € R™*™ and V' €

R™ ™ such that
A=UzVT,

where ¥ is a nonsquare diagonal matrix

g : 0

Ty

0 0 ]

A square matrix 7" of the order n is symmetric and positive semidefinite (abbreviated
SPSD and denoted by 7" > 0) if

oI Ty > 0 forall v e R".
T is symmetric and positive definite (abbreviated SPD and denoted by 7" > 0) if
v Ty >0 forall v e R", v # 0.

Recall that a symmetric matrix 7" is positive definite if and only if all its eigenvalues are
nonnegative. The corresponding minimization problem, stated originally in linear algebra
and frequently used in many scientific areas, is to minimize the quadratic form

1 1 .
§SUTT:L‘-I—])T.'IT+(1:§<;L',TI>+]JF£C+G (1.1)
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with respect to unknown vector € R™. Here T is a square positive definite matrix of the
order n, p € R™ is a vector of length n and « is a real scalar. Optimization problem (1.1) is
called an unconstrained quadratic optimization problem.

Let z,p,a € R" are real vectors and 7' is a symmetric n X n matrix. The linearly
constrained quadratic programming problem can be formulated as follows (see, for exam-
ple, [2]):

Minimize the goal function (1.1) subject to one or more inequality and/or equality con-
straints defined by two n X n matrices A, ¥ and two n-dimensional vectors b, d:

Az <b
Ex=d.

Notice that in the general Quadratic Programming model (QP model shortly) we can
always presume that 7" is a symmetric matrix. Indeed, because

) 1
eI Ty = §.TT(T + 717z

it is possible to replace 7" by the symmetric matrix T’ = %(T + 11,

Proposition 1.3. An arbitrary symmetric matrix T is diagonalizable in the general form
T = RDRT, where R is an orthonormal matrix, the columns of R are an orthonormal
basis of eigenvectors of T, and D is a diagonal matrix of the eigenvalues of T.

Proposition 1.4. [fT € R"*" is symmetric PSD matrix, then the following statements are
equivalent:

)T = MMT, for an appropriate matrix M of the order M € R™*k | > 1.

2y v Tv > 0 forallv € R™, v # 0.

3) There exist vectorsv;, 1 = 1,...,n € RF (for some k > 1) such that T;; = uiij for all
i,7=1,...,n. The vectorsv;, i = 1,...,n, are called a Gram representation of T'.

4) All principal minors of 'T' are non-negative.

Proposition 1.5. Let T' € C"*" is symmetric. Then T = 0 and it is nonsingular if and only
if T = 0.

Quadratic forms have played a significant role in the history of mathematics in both
the finite and infinite dimensional cases. A number of authors have studied problems on
minimizing (or maximizing) quadratic forms under various constraints such as vectors con-
strained to lie within the unit simplex (see Broom [3]), and the minimization of a more
general case of a quadratic form defined in a finite-dimensional real Euclidean space under
linear constraints (see e.g. La Cruz [4], Manherz and Hakimi [5]), with many applica-
tions in network analysis and control theory (for more on this subject, see also [6,7]). In a
classical book on optimization theory, Luenberger [8], presented similar optimization prob-
lems for both finite and infinite dimensions. Quadratic problems are very important cases
in both constrained and non-constrained optimization theory, and they find application in
many different areas. First of all, quadratic forms are simple to be described and analyzed,
and thus by their investigation, it is convenient to explain the convergence characteristics



