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Preface

In planning experiments, engineers and scientists are in-
variably confronted with the question: “How many observations
should be made?”’ This engineering manual is designed (1) to fa-
miliarize experimentalists with the kind of information required for
sample-size determination, and (2) to provide them with elementary
procedures, formulas, and tables for choosing an economical sample
size.

Essentially this manual is a compilation of mathematical proce-
dures for determining the optimum size of a research experiment,
that is, the number of specimens which should be observed. Some
forty different types of objectives for a research experiment are
considered. For each type of research objective, a mathematical
formula is developed to determine the minimum number of observa-
tions necessary to achieve that objective. A set of twenty tables of
common statistical distributions is provided in the appendix to assist
in applying the formulas to actual problems in the planning of re-
search experiments. For each type of research objective, a case
example of applying the formulas in the design of experiments in
electronic reliability has been carried out. Additional information is
included on lot acceptance sampling plans of the U.S. Department
of Defense and on methods for constructing cost schedules for
sample-size determination.

The first draft of this manual was written in 1960-1961 as a
guidance document for the laboratory evaluation of electronic com-
ponent parts under the sponsorship of the Electronic Component
Reliability Center at Battelle Memorial Institute. We are indebted
to the following organizations which have granted permission to
publish this material: Bell Telephone Laboratories; the Boeing
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Company; General Dynamics Corporation; General Electric Com-
pany; General Precision, Inc.; Hughes Aircraft Company; Interna-
tional Business Machine Corporation; Lockheed Aireraft Corpora-
tion; Martin-Marietta Corporation; Motorola, Inc.; National Aero-
nautics and Space Administration; Radio Corporation of America;
the Raytheon Company; and Westinghouse Electric Corporation.

Subsequently helpful comments for revision of the manual were
received from several representatives of these sponsoring organiza-
tions, from Professors Robert Bechhofer of Cornell University and
K. A. Brownlee of the University of Chicago, and from my colleagues
at Battelle, G. H. Beatty, C. W. Hamilton, and R. E. Thomas.
Professor Charles Quesenberry of Montana State College read the
first draft in detail during the summer of 1962 and in the course of
our many discussions contributed much to the revision.

For the tables which appear in the appendix I am indebted to
E. S. Pearson, editor of Biometrika,; Clifford Hildreth, editor of the
Journal of the American Statistical Association; and J. L. Hodges, Jr.,
editor of the Annals of Mathematical Statistics, for permission to
reprint tables which have appeared in their journals. I am also
indebted to E. S. Pearson and H. O. Hartley and to the publisher,
Cambridge University Press, for permission to reprint Tables 12
and 18 from their book ‘“Biometrika Tables for Statisticians,” Vol-
ume I; to Sir Ronald Fisher and Frank Yates and to the publisher,
Messrs. Oliver and Boyd, for permission to use numerical entries in
Tables I11 and IV from their book ““Statistical Tables for Biological,
Agricultural and Medical Research’”; and to Anders Hald and to
the publisher, John Wiley and Sons, for permission to reprint
Table XII from his book ‘““Statistical Tables and Formulas.”

Finally, I express my appreciation to Battelle Memorial Institute
for encouragement and support in this effort and to Mrs. Nancy
Zacaroli, secretary of the Mathematics and Theoretical Physics
Division, for the difficult typing of both the first and the final
drafts of the manuscript.

ArtHUR E. MACE
April 1964
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CHAPTER 1

The Nature of Statistical Inference

Modern engineering relies heavily on sampling exper-
iments as a source of information for making engineering decisions.
Chemical companies test small laboratory batches of a new paint
formula to estimate the durability of the paint in actual service.
Automobile manufacturers inspect samples of incoming shipments
of bolts and nuts to compare lot quality with acceptance specifica-
tions. Computer manufacturers life-test small samples of electronic
parts from each of several vendors to select the best source of
supply for use in new circuit designs. Aircraft materials laboratories
fatigue-test specimens of new metals with different combinations
of chemical elements in order to compare the effects of these elements
on tensile strength.

1. Inferences and Their Accuracy

The results of such sampling experiments are used to predict
the consequences of making specific engineering decisions. From
the observed behavior of a relatively small number of observational
units, inferences are made about the unobserved behavior of usually
a much larger number of units. Two sources of error can contribute
to the inaccuracy of such inferences:

(1) Errors of bias, which arise principally because the particular
conditions of the experiment almost never represent the exact
model of the situation about which inferences are desired.

(2) Errors of sampling, which arise principally because the par-
ticular observational units chosen for the sample almost never
represent the exact population of units about which inferences are
desired,
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2 Sample-Size Determination

An experiment can be designed to minimize the principal source
of biased error by specifying the conditions of the experiment so
that they are physically similar to the situation about which
inferences are desired. There are a number of excellent accounts
of the theory of modeling and dimensional analysis available for
guidance in formulating such specifications.*

An experiment can also be designed to control the principal
source of sampling error by specifying the number of observational
units to be drawn at random from the population of units about
which inferences are desired. This manual is designed to provide
computational formulas for use in specifying the sample size.

2. Some Definitions of Terms

The mathematical justification for making statistical inferences
depends upon what is known as random sampling. To describe
this relation, we begin by defining some terms:

Observational Unit. An individual member of a collection of
nominally identical objects or responses of objects to treatment,
identifiable by one or more variables. It is presumed that the
individual identification of the member within the collection
arises from sources of variation which are independent of those
affecting any other individual member.

Population. A finite or infinite and sometimes hypothetical col-
lection of nominally identical observational units about which
inferences are desired.

Random Sample. A finite subset of observational units drawn
from a population by a chance process. It is presumed that on
each draw all units in the population have had an equal chance
of being selected for the subset.

Observation. One or more variables which describe an individual
observational unit included in the sample, either directly ob-
served or derived from measurements.

* Langhaar, H. L., “Dimensional Analysis and Theory of Models,” New York,
John Wiley & Sons, 1951; Birkhoff, G., *Hydrodynamics. A Study of Logic, Fact,
and Similitude,” Princeton, Princeton University Press, 1950; and Bridgeman,
P. W., “Dimensional Analysis,” New Haven, Yale University Press, 1949.



The Nature of Statistical Inference 3

Sample Statistic. A summary variable, derived from observations,
which describes either the distribution of observations in one
sample or the configuration of such distributions in two or more
samples, frequently used to estimate some population parameter.

Population Parameter. A constant of unknown value which de-
scribes the distribution of variables representing observational
units in one population or the configuration of such distributions
in two or more populations, frequently estimated by some
sarmple statistic.

3. The Basis for Inferences

The objective of the sampling experiment is to make unbiased
and reasonably precise inferences with respect to the consequences
of engineering decisions. The particular engineering decision should
specify (1) the observational unit involved in the decision, (2) each
population affected by the decision, and (3) the population param-
eter which measures the consequence of the decision. Then the
basic problems to be solved in designing the sampling experiment
are to determine (1) the sample statistic which will be used to
estimate the population parameter, (2) the sampling process for
selecting observational units so that a random sample of observa-
tions from the population can be expected, and (3) the minimum
number of observational units needed to furnish inferences of
desired precision.

Mathematicians have devised procedures for making inferences
about population parameters from a set of observations provided
these observations constitute a random sample of independent
identically distributed random variables. To the extent that
engineers and statisticians are able to specify a sampling process
which should produce such a random sample, there is reason to
expect that the set of observations actually produced can be used
in making unbiased inferences about population parameters.

Mathematicians have further studied the probability distribu-
tions of certain sample statistics as a function of the number of
observations in a random sample used in their derivation. As the
sample size increases, sample statistics derived from observations
tend to have smaller sampling errors. To the extent that engineers



4 Sample-Size Determination

and statisticians are able to prescribe the number of observational
units for controlling sampling errors, there is reason to expect that
the sample statistic actually produced can be used in making
inferences of arbitrarily predetermined precision.

4. Types of Inferences

There are three broad categories of problems for which systematic
procedures have been developed to exercise control over sampling
errors:

(1) Estimation Problems. Problems in which we wish to infer
that the true but unknown value of a specified population param-
eter is contained within a bounded interval of given width.

(2) Tests of Hypotheses. Problems in which we wish to make one
of two inferences: either that the true but unknown value of a
specified population parameter differs from a specified standard
in one or both directions or that any difference is less than a given
amount.

(3) Selection Problems. Problems in which we wish to select from
several populations the one with the highest (or lowest) true but
unknown value of a specified population parameter when the
assumed difference between the highest and next highest values (or
between the lowest and next lowest values) among the various
populations is at least a given amount.

The procedure for making these statistical inferences requires
that prior to the conduct of the experiment the engineer or statisti-
cian assign relatively low probability levels, say 10 per cent, to the
values of the maximum risks of making an incorrect inference he
is willing to take. Then after the experiment has been performed,
and assuming the observations produced constitute a random sample
of independent identically distributed random variables, the
engineer or statistician can make unbiased inferences about popula-
tion parameters with preassigned maximum risks of being wrong.

5. The Precision of Inferences

With fixed probability levels assigned to the maximum risks of
making an erroneous inference, the way in which the precision of
the inference can be measured depends upon the particular category
of problem:
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(1) Estimation Problems. The precision of the inference can be
measured by the width of the confidence interval.

(2) Tests of Hypotheses. The precision of the inference can be
measured by the width of an indifference margin—the maximum
difference between the true but unknown value of the population
parameter and the standard which is to be allowed without limiting
to a preassigned probability level the risk of failing to detect this
difference.

(3) Selection Problems. The precision of the inference can be
measured by the width of an indifference margin—the maximum
difference between the highest and the next highest true but un-
known values of a population parameter (or between the lowest
and next lowest values) among several populations which is to be
allowed without limiting to a preassigned probability level the
risk of selecting an incorrect population as the one with the highest
(or lowest) population parameter.

Once a sampling experiment is completed, the engineer or statis-
tician can compute the width of the appropriate confidence interval
or indifference margin based on the observed values. The precision
with which inferences can be stated turns out to be a function not
only of the number of sample observations but also of the vari-
ability in the values of these observations. Large variability in
observed values and/or small sample sizes produce imprecise in-
ferences. Small variability in observed values and/or large sample
sizes produce precise inferences.

When a sampling experiment is designed for purposes of making
engineering decisions, there are two kinds of information required
to determine the minimum sample size so that inferences of desired
precision can be expected. The first kind of information required
is a statement of the experimental objective which should contain
a specification of the amount of precision in inferences about the
designated population parameter which is of practical significance
for decision. The second kind of information required is a quan-
titative statement of the variability in observed values which is
to be expected. The next two chapters indicate how each of these
two kinds of information can be obtained for purposes of deter-
mining an economical sample size.



CHAPTER 2

The Objective of a Sampling Experiment

The design of economical sampling experiments for pur-
poses of making engineering decisions requires a clear understanding
of the experimental objective. If the individual responsible for
experimental design does not have this understanding, the exper-
iment is doomed to failure even before it begins. On the other
hand, when he does have this understanding, there is reason to
expect that requirements for data analysis can be correctly antic-
ipated at the time the experiment is designed.

In modern engineering the same individual is seldom completely
responsible for the design of the experiment, the conduct of the
experiment, the analysis of the experimental data, and the making
of the engineering decision. With a group of different individuals
involved in the process of experimentation and decision-making,
it is essential that a written statement of the experimental objective
be prepared. Experience indicates that this statement should con-
tain specific and concise operational definitions of the following:

(1) the observational unit involved in the decision,

(2) the one or more populations involved in the decision,

(3) the population parameter which is to provide the basis for
decision,

(4) the type of inference about the population parameter required
for decision, and

(5) the amount of precision in inferences about the population
parameter which is of practical significance for decision.
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1. The Importance of Operational Definitions

The purpose of these definitions is to direct the actual physical
process of sampling, experimentation, and observation toward the
goal of producing plausible inferences relevant to making particular
engineering decisions. For any particular experiment these defini-
tions will be determined largely by the subject matter of the engi-
neering decisions to be made. But there are important design
factors which should be considered so that these definitions will
strengthen the plausibility of any inference made after the sampling
experiment is completed.

By the plausibility of an inference we mean the extent to which
assumptions about the hypothetical process producing sample ob-
servations and justifying inferences are in fact satisfied by the
physical processes actually used. The procedure for making in-
ferences implies that after a finite number of sample observations
are completed, probability statements will be made as to what the
results of the experiment would be like if the number of observations
were not terminated but allowed to approach infinity, The procedure
assumes that any set of sample observations produced by the exper-
iment will constitute a random sample of identically distributed
random variables.

Whether any actual physical process will produce such a set of
sample observations is not known, and whether any actual set of
sample observations is in fact such a set of sample observations
cannot be determined with certainty. The plain fact is that, for
purposes of designing engineering experiments and making in-
ferences based on sample observations, there exists a mathematical
model for making valid inferences from sample observations on
the assumption that these sample observations have been produced
by a hypothetical process of sampling, experimentation, and
observation. To the extent that the engineer or applied statistician
can direct an actual physical process of producing sample observa-
tions toward this hypothetical process by defining the conditions
for sampling, experimentation, and observation, he should be able
to strengthen the plausibility of any inference that he may wish
to make.



