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Preface

The classical theory of automorphic functions, created by
Klein and Poincaré, was concerned with the study of analytic
functions in the unit circle that are invariant under a discrete group
of transformations. Since the unit circle can be regarded as a
Lobachevskii plane in the Poincaré model, we may say that the
classical theory of automorphic functions dealt with the study of
functions analytic on the Lobachevskii plane and invariant under a
discrete group of motions of the plane.

In the subsequent development of the theory of automorphic
functions the papers of Hecke, Siegel, Selberg, and a number of
other investigators played an essential part. In particular, papers
by Godement, Maass, Roelcke, Peterson, and Langlands cover one
or another aspect of the connection between automorphic functions
and the theory of groups. Another very interesting direction in the
theory of automorphic functions can be found in works of Ahlfors
and Bers.

The whole development of the theory of automorphic functions
pointed forcefully to the necessity of a group-theoretical approach.
Recently many of the ideas of the theory have been linked with
arbitrary Lie groups and their discrete subgroups.

The connection between the theory of group representations
and the theory of automorphic functions was made particularly
precise in the last ten or twenty years, in the context of the develop-
ment of the theory of infinite-dimensional representations of groups.
Although this connection was perceived much earlier (for example,
in papers of Klein and Hecke), a true understanding was achieved
only after the construction of the theory of infinity-dimensional
representations of Lie groups.
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One of the first papers to establish this relationship was by
Gel’fand and Fomin, in which the concepts of representation theory
were linked with the theory of dynamical systems and the theory of
automorphic functions. The connection of automorphic functions
with dynamical systems already occurs, in essence, in earlier papers
of Hopf on dynamical systems.

Apart from the theory of infinite-dimensional representations
of Lie groups, which had received a strong impetus in the last
twenty years (in papers of Gel’fand and Naimark, Harish-Chandra,
Gel’fand and Graev, and others), an important part in the construc-
tion of the modern theory of automorphic functions was the creation
of the theory of algebraic groups by Chevalley, Borel, Harish-
Chandra, Tits, and others.

Perhaps one of the most remarkable ideas that have arisen in
recent years is that of the group of adeles. In the process of writing
this book the authors have convinced themselves how natural
many concepts become when they are applied to the group of
adeles and its discrete subgroup of principal adeles.

The book consists of three chapters. In the first chapter we
consider problems of representation theory and the theory of auto-
morphic functions connected with a Lie group and a discrete
subgroup of it. Although the individual questions of this chapter
are of a general character, the main results refer to the group of real
matrices of order 2 and its discrete subgroups. In particular, in this
chapter we give an account, in the language of representation
theory, of the remarkable results of Selberg (Selberg’s trace formula).

In the second chapter we construct the theory of representations
of the group of matrices of order 2 with elements from an arbitrary
locally compact topological field. The well-studied theory of
representations. of the group of complex matrices and the group of
real matrices arises here as a special case. Many facts of representa-
tion theory become more conceptual in this general approach. We
also mention that the special functions over an arbitrary field, which
arise naturally in this theory, are closely related to interesting func-
tions in the theory of numbers (Gauss sums, Kloostermann sums,
and others).

The third chapter is devoted to a study of the groups of adeles
and the natural homogeneous spaces that arise in connection with
these groups. Since it is assumed that the reader is not acquainted
with the theory of adeles, the first two sections provide an expository
account of the basic ideas of this theory.

With the group of adeles there is connected a remarkable
homogeneous space (the space of cosets relative to the subgroup of
principal adeles), which has been the main object of study in all
papers concerned with adeles. But whereas these papers were
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devoted to the study of the homogeneous space itself, the computa-
tion of its volume (the Tamagawa number), and so forth, we study
here the space of functions on this homogeneous space (see § 4, 6, 7).
From this point of view the fundamental paper of Tate, in which he
gives a derivation of the functional equation of the Riemann Zeta-
function by means of adeles, can be regarded as an analogue (for
the case of matrices of order 1) of the study of representations that
we pursue here. Many of our results were also obtained later by
other methods by Godement, whose work was very useful in writing
§ 4 of this chapter.

The last three sections are devoted to the beginnings of the
general theory for adele groups of an arbitrary algebraic reductive
group. A fundamental role in this theory is played by a certain group
of automorphisms of the function space that forms a representation
of the Weyl group. Symmetry with respect to this group is a
veritable key to relations of the type of the functional equation for
the Riemann Zeta-function. These automorphisms are closely
connected with the so-called horospherical maps. The fact that
much of the material in these sections is of quite recent origin
inevitably leaves its mark on the character of the exposition itself,
which is frequently complicated.

The authors hope, however, that the additional burden the
reader assumes in coping with these sections is perhaps compensated
by the fact that, if he so wishes, he may participate in the work on
these far from completely answered questions.

The book can be read independently of the preceding volumes
of the series Generalized Functions. However, conceptually it is
closely connected with the theory of generalized functions and
especially with the contents of volume 5, which deals with analogous
problems in other material. It can be regarded as a natural
extension of the fifth volume.

The authors are deeply indebted to A. A. Kirillov, who has
accepted the arduous task of editing the book and of writing one of
the sections (Appendix to Chapter II) in which he expounds his
own new results.

Since sending the manuscript to the printers the authors have
become acquainted with a preprint of an interesting new paper by
Langlands, the material of the Summer School on the Theory of
Algebraic Groups, and a paper by Moore. In these papers the
reader will find additional information on the material of this book.

I. M. GEL’FAND
M. I. GrRAEV

I. I. PYATETSKII-SHAPIRO






Note

The theory of group representations has given us a new under-
standing of classical results in the theory of automorphic functions
and has made it possible to attack the problems of this theory on a
wider scale and obtain a number of new and profound results.
The language of the theory of adeles—a recently developed branch
of mathematics—plays an important role. The book contains many
new ideas and results that have so far been accessible only in
mathematical journals. Therefore, the book should appeal to
various circles of readers interested in contemporary mathematics.
It may be recommended to students in advanced courses, to Ph.D.
candidates and to research workers in pure mathematics.
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