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The early development of graph theory was heavily motivated and influenced by topo-
logical and geometric themes. such as the Konigsberg Bridge Problem, Euler’s
Polyhedral Formula, or Kuratowski’s characterization of planar graphs. In 1936, when
Dénes Konig published his classical Theory of Finite and Infinite Graphs, the first
book ever written on the subject, he stressed this connection by adding the subtitle
Combinatorial Topology of Systems of Segments. He wanted to emphasize that the
subject of his investigations was very concrete: planar figures consisting of points
connected by straight-line segments. However, in the second half of the twentieth
century, graph theoretical research took an interesting turn. In the most popular and
most rapidly growing areas (the theory of random graphs, Ramsey theory, extremal
graph theory, algebraic graph theory, etc.), graphs were considered as abstract binary
relations rather than geometric objects. Many of the powerful techniques developed in
these fields have been successfully applied in other areas of mathematics. However,
the same methods were often incapable of providing satisfactory answers to questions
arising in geometric applications.

In the spirit of Konig, geometric graph theory focuses on combinatorial and
geometric properties of graphs drawn in the plane by straight-line edges (or more
generally, by edges represented by simple Jordan arcs). It is an emerging discipline
that abounds in open problems, but it has already yielded some striking results which
have proved instrumental in the solution of several basic problems in combinatorial
and computational geometry. The present volume is a careful selection of 25 invited
and thoroughly refereed papers, reporting about important recent discoveries on the
way Towards a Theory of Geometric Graphs.

ISBN 0-8218-3484-3

8

9li7808211183484
CONM/342

AMS on the Web
WWW.ams.org




m—

Towards a Theory of Geometric Graphs

e Pach, Editc




C ONTEMPORARY
M ATHEMATICS

Towards a Theory
of Geometric Graphs

Janos Pach
Editor

American Mathematical Society
Providence, Rhode Island



Editorial Board
Dennis DeTurck, managing editor
Andreas Blass Andy R. Magid Michael Vogelius

2000 Mathematics Subject Classification. Primary 05C62; Secondary 57M50, 90C27,
05C35, 68W35.

Library of Congress Cataloging-in-Publication Data

Towards a theory of geometric graphs / Janos Pach, editor.
p. em. — (Contemporary mathematics, ISSN 0271-4132 ; 342)
Includes bibliographical references.
ISBN 0-8218-3484-3 (alk. paper)
1. Graph theory. I. Pach, Janos. II. Contemporary mathematics (American Mathematical
Society) ; v. 342.

QA166.T68 2004
5117.5—dc22 2003063929

Copying and reprinting. Material in this book may be reproduced by any means for edu-
cational and scientific purposes without fee or permission with the exception of reproduction by
services that collect fees for delivery of documents and provided that the customary acknowledg-
ment of the source is given. This consent does not extend to other kinds of copying for general
distribution, for advertising or promotional purposes, or for resale. Requests for permission for
commercial use of material should be addressed to the Acquisitions Department, American Math-
ematical Society, 201 Charles Street. Providence, Rhode Island 02904-2294, USA. Requests can
also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In
such cases, requests for permission to use or reprint should be addressed directly to the author(s).
(Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of
each article.)

(© 2004 by the American Mathematical Society. All rights reserved.
‘ The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

@ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10987654321 09 08 07 06 05 04



Towards a Theory
of Geometric Graphs



Paul Turan (1910-1976)

Paul Erdos (1913-1996)



To the memories of Paul Erdos and Paul Turan






Preface

The early development of graph theory was heavily motivated and influenced
by topological and geometric themes, such as the Kénigsberg Bridge Problem, Eu-
ler’s Polyhedral Formula, or Kuratowski's characterization of planar graphs. When
in 1936 Dénes Konig published his classical Theorie der endlichen und unendlichen
Graphen, the first book ever written on the subject, he stressed this connection
by adding the subtitle Kombinatorische Topelogie der Streckenkomplexe (Combi-
natorial Topology of Systems of Segments). He wanted to emphasize that the
subject of his investigations was very concrete: planar figures consisting of points
connected by straight-line segments. However, in the second half of the twentieth
century, graph theoretical research took an interesting turn. In the most popular.
most rapidly growing areas (the theory of random graphs, Ramsey theory. extremal
graph theory, algebraic graph theory, otc.).Nfr;{f)hs were considered abstract binary
relations rather than geometric objects. Many of the powerful techniques devel-
oped in these fields have been successfully applied in other areas of mathematics.
including geometry.

In the past two decades we have witnessed a renaissance of geometry that has
permeated virtually every part of mathematics. Graph theory has been no excep-
tion. Topological and geometric methods have proved to be instrumental in the
solution of many important problems in graph and hypergraph theory. Meanwhile,
a number of newly emerging fields of computer science have served as rich sources of
exciting open geometric questions. These include computational geometry, robot-
ics, pattern recognition, computerized tomography, VLSI design, graph drawing.
computer graphics, computer-aided design (CAD). and geometric information sys-
tems (GIS). to mention only a few. Many of the questions arising were related to
systems of segments in the plane or to simplices in higher dimensions. Some of
them looked very familiar: they had been asked in different contexts much earlier
by Paul Erdés, Paul Turdn, Micha Perles. John Conway, and others. For instance,
Erdds’s notoriously difficult questions on the distribution of distances determined

\hyvﬁgito point sets in Euclidean spaces boil down to problems about incidences
between points and lines, circles, spheres, and other geometric objects (see the sur-
vey of Pach and Sharir in this volume). Similar questions turned out to play an
important role in robotics. To solve Turdn’s Brick Factory Problem [T77], one has
to find a drawing of the complete bipartite graph that minimizes the number of
crossings between the edges. The “crossing number” of a graph is a central no-
tion in VLSI design: it is closely related to the minimum area of a chip realizing
the same network. According to Conway’s Thrackle Conjecture [W69], if a graph
G can be drawn in the plane so that any pair of its edges cross precisely once
(where a common endpoint is counted as a crossing), then ¢ has at most as many
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edges as vertices. Perles found a very elegant proof for straight-line drawings, and
generalized the question in other directions.

For lack of better understanding of the “Combinatorial Topology of Systems
of Segments,” the traditional methods of graph theory have rarely provided satis-
factory answers to questions of the above type. One can often associate a graph or
hypergraph to the structure under investigation and observe that it satisfies certain
(sometimes fairly simple) geometric conditions. Then one can completely forget
about geometry, and finish the proof by establishing a theorem on abstract graphs
with the given properties. A simple prototype of this approach is the following
argument of Erdos [E46], which proves that any set P of n points in the plane
contains at most Q\gwpoiut pairs whose distance is one. Connect two elements
of P by an edge if they are at unit distance. Since two (unit) circles have at most
two points in common, the resulting graph has no K 3 as a subgraph. (K3 3 is the
complete bipartite graph with 2 and 3 vertices in its classes.) The result now follows
from the fact [KST54] that the number of edges of any (abstract) K s-free graph
with n vertices is at most O(n/?). This last statement is asymptotically sharp, but
the geometric result is not. Exploring further geometric properties, for instance,
the structure of crossings, it can be shown [SSzT84,5z97| that the number of unit
distance pairs determined by n points is O(n*/?). Even this bound is probably very
far from being best possible.

A geometric graph is a graph drawn by straight-line edges in the plane. It seems
that to tackle many problems arising in combinatorial and computational geometry
and in the application areas mentioned above, one has to study geometric graphs
satisfying certain relevant geometric conditions. We illustrate this phenomenon by
Lovész’ proof [L71] showing that the number of “halving lines” determined by an
n-element point set P in general position in the plane is O(nz/f)) Suppose n is even.
A line ¢ connecting two elements p,q € P is called a halving line if either of the
open half-planes bounded by ¢ contains precisely 7 — 1 other points of P. Define a
geometric graph G on the vertex set P by connecting p,q € P with a straight-line
segment (edge) if and only if they induce a halving line. It is not hard to argue
that any line can cross at most n edges of G. On the other hand, every geometric
graph on n vertices that satisfies this condition has O(n3/?) edges. In fact, much
more is true: Ajtai, Chvatal, Newborn, Szemerédi [ACN82| and, independently,
Leighton [L83] proved that the number of crossings in any geometric graph with n
vertices and e > 4n edges is at least C'e®/n?, for a suitable constant C' > 0. Thus,
if Lovdsz' geometric graph G had more than yn/? edges, then it would have an
edge crossing at least 2Ce2/n? > 2C+%n > n others, provided that v > 1/v/2C.
This would contradict the property that every line crosses at most n edges of G.
Using a more delicate argument based on the same idea, Dey [D98] showed that
the number of halving lines is O(n*/3). It is quite likely that this bound can be
further improved.

The above examples suggest how to reformulate one of the fundamental ques-
tions of extremal graph theory for geometric graphs: What is the maximum number
of edges that a geometric graph of n vertices can have if it satisfies certain geomet-
ric properties? The papers of Pach-Radoici¢-T6th, Székely, and Pinchasi-Radoci¢
focus on problems of this type. The last paper represents a real breakthrough: it
is shown that the number of edges of a geometric graph with n vertices that con-
tains no self-intersecting cycle of length 4 is O(n®®). This result has already found
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several applications. Brass generalizes some extremal problems to geometric hy-
pergraphs (e.g., to systems of triangles induced by a point set in convex position).
The contributions of Cairns-MecIntyre-Nikolayevsky and Perles-Pinchasi are related
to Conway’s Thrackle conjecture and to the problem of halving lines, respectively.
Lovész-Vesztergombi-Wagner-Welzl discover a beautiful connection between k-sets
and crossing numbers. As a consequence, they get surprisingly close to determining
the smallest number of crossings that a complete geometric graph with n vertices
can have. The papers of Eppstein and Shahrokhi-Sykora-Székely-Vrto analyze the
relationship between other natural graph parameters related to edge crossings.

After the pioneering work of Székely [Sz97] and Solymosi-Téth [STO01], there
have been many important developments related to Erdés’s question about the
minimum number of distinct distances determined by n points in the plane [E46].
The paper of Katz-Tardos included in this volume represents the state of the art
in this area: the best lower bound presently known for this function. On the
other hand, Ruzsa’s contribution indicates the theoretical limits of their approach.
Solymosi-Vu make a big step towards an asymptotic solution of the analogous
question in higher dimensions. Here they detail their elegant arguments only for
“homogeneous” sets, but it is not hard to extend their proof to the general case.
A construction of Swanepoel-Valtr improves the best known lower bound on the
number of times the same distance can occur among n points on the sphere. The
papers of Katona-Mayer-Woyczynski and Jamison address related questions for
distance and slope distributions, respectively.

The basic problems of the theory of random graphs and Ramsey theory can also
be rephrased for geometric graphs. Spencer’s paper describes the expected behavior
of the biplanar crossing number of random graphs, while the works of Dumitrescu-
Radoié¢ié, Kaneko-Kano-Suzuki, Kostochka, and NesSetril-Solymosi-Valtr address
Ramsey-type questions. The last paper proves the following remarkable result
that can be regarded as a far-reaching generalization of Féary’s theorem that states
that every planar graph permits a straight-line drawing: For any coloring with a
finite number of colors of all segments induced by point pairs in the plane, there
is a color such that every planar graph has a straight-line drawing in which all
edges have that color. The papers of Alt-Knauer-Rote-Whitesides and Maehara
are concerned with the mobility and rigidity of geometric graphs (linkages), re-
spectively. In the work of Arutyunyants-losevich, some deep and surprising con-
nections are uncovered between distance geometry and measure theory. Roughly
speaking, they prove that Falconer’s celebrated conjecture [F85] claiming that ev-
ery d-dimensional set of Hausdorff dimension at least d/2 has positive Lebesgue
measure, is almost surely true for random metrics. The paper of Dujmovié-Wood
applies Lovész' Local Lemma to construct almost optimally compact crossing-free
embeddings of geometric graphs in 3-space with the property that all vertices are
mapped to integer points.

Our collection is dedicated to two outs‘rdnding mathematicians and lifelong
friends: Paul Turdn and Paul Erdds. Turdn’s Brick Factory Problem was the first
genuine optimization problem in graph drawing. The systematic study of extremal
problems for geometric graphs was initiated many years ago by P. Erdos, M. Perles,
and his student, Y. Kupitz [K79], and by S. Avital and H. Hanani [AH66).

The present volume is neither a conference proceedings (i.e., quasi-random col-
lection of articles), nor a systematic review of the field. It is a careful selection of 25
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invited and thoroughly refereed papers, reporting about exciting recent discoveries
on the way “Towards a Theory of Geometric Graphs.”

Janos Pach
Berkeley, October 2003
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On the Complexity of the Linkage Reconfiguration Problem
Helmut Alt, Christian Knauer, Giinter Rote, and Sue Whitesides

ABSTRACT. We consider the problem of reconfiguring a linkage of rigid straight
segments from a given start to a given target position with a continuous nonin-
tersecting motion. The problem is nontrivial even for trees in two dimensions
since it is known that not all configurations can be reconfigured to a straight
position. We show that deciding reconfigurability for trees in two dimensions
and for chains in three dimensions is PSPACE-complete.

Section 1. Introduction

A linkage in d-space is a crossing-free straight line embedding of a graph in
R? where the edges are considered as rigid bars and the vertices are considered as
hinges. A reconfiguration is a continuous motion of the vertices that preserves the
lengths of the edges and never causes edges to collide.

We investigate several complexity issues concerning the reconfiguration of sim-
ple (non-crossing) polygonal chains of fixed-length segments in 3D and of simple
trees of fixed-length segments in 2D. To be more precise, we consider the complexity
of variants of the following

Linkage reconfiguration problem: Given two linkages S and T' in d-space.
can we reconfigure S into 17

In 2D, every simple polygonal chain of fixed length segments can be continu-
ously moved to a straight configuration [17, 7|. Nevertheless, the general question
is nontrivial since it is known that simple trees of fixed length segments cannot
always be moved to configurations that are essentially flat, [7], and that there are
polygonal chains in 3D that cannot be moved to a straightened configuration [5, 2].

In Section 2 we observe that the linkage reconfiguration problem is decidable in
polynomial space for any fixed dimension d. In Section 3 we complement these up-
per bounds by showing that the reconfiguration problem for trees in 2D is PSPACE-
hard. The technique we use is based on work of Joseph and Plantinga [11]. Finally,

1991 Mathematics Subject Classification. Primary 68U05, 68Q17; Secondary 683W40.

Key words and phrases. Computational Geometry, Linkage reconfiguration, PSPACE-
completeness.
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2 HELMUT ALT, CHRISTIAN KNAUER, GUNTER ROTE, AND SUE WHITESIDES

in Section 4 we sketch an extension of the PSPACE-hardness result to the recon-
figuration problem for chains moving in 3D.

Section 2. Deciding the reconfiguration problem in polynomial space

Any embedding of a linkage consisting of n links in d-dimensional space can
be described by giving the dn coordinates of the vertices. Thus, any embedding
can be represented as a point in R%*. Furthermore, the condition that no two links
may intersect can be written as a formula in the first order theory of the reals,
i.e., a formula that is built by joining atomic formulas which involve the variables
that represent the coordinates of the vertices, using addition and multiplication as
operators, and < as a predicate, with the usual boolean connectives. Furthermore,
for each link, we can add to this formula the condition that its two endpoints lie a
fixed distance (the length of the link) apart.

The region where this formula is true is a semialgebraic subset F of R of the
feasible embeddings of the linkage. Assume that two linkages S and T are given.
Obviously linkage S can be reconfigured into linkage 7" precisely when there exists
a path within F starting at S and ending at 7.

The application of this technique to motion planning problems was investigated
first by Schwartz and Sharir [15] and shown to be decidable using the techniques
of Collins [6], which were improved later by Canny [3]. Afterwards, Renegar [14]
showed that problems of this kind are in PSPACE (also claimed by Canny [4]). So
we can conclude

THEOREM 1. The reconfiguration problem for arbitrary linkages in d-
dimensional space, d € N, is in PSPACE.

Lower bounds for the computational complexity of motion planning problems
were first investigated by Reif [12], who sketched a PSPACE hardness result for
a reconfiguration problem in which the moving object has an arbitrary number of
degrees of freedom (the result was further elaborated in [16], pages 267-281.) The
moving object consists of n polyhedra linked together at revolute joints. It moves
in a 3D environment that contains polyhedral obstacles, and is to move from one
given configuration to another. Hopcroft, Joseph, and Whitesides [10] proved the
PSPACE-hardness of a reachability problem for a linkage moving in the plane. The
linkage consists of rigid rods joined together at their endpoints, about which they
may turn. Rods are allowed to cross over one another, and some endpoints are fixed
to the plane. There are no obstacles in the environment. Joseph and Plantinga
[11] proved a PSPACE-hardness result for a planar linkage consisting of a chain of
links connected sequentially and moving in a polygonal environment.

There are many lower bound results for motion planning problems, but only
a few of these give PSPACE hardness results. With the exception of [11], these
PSPACE hardness results are not for chains of links, but rather, concern other
kinds of objects or sets of objects. Two early examples are the following. Hopcroft,
Schwartz, and Sharir [9] proved the PSPACE-hardness of a reconfiguration problem
for sliding blocks in a polygonal environment in 2D, and Reif and Sharir [13] gave
a PSPACE hardness result for an object moving in 3D among n moving obstacles.

Early results on algorithmic motion planning, including lower bound results,
were reprinted in a volume edited by Schwartz, Sharir, and Hoperoft [16]. This
volume includes [15], a detailed variation of [12], and [10].



