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PREFACE

This is a condensed, updated version of earlier works to enable the flow
assurance engineer to quickly answer seven questions:

(1) How do hydrate plugs form?

(2) How can hydrate plugs be prevented from forming?

(3) How to deal safely with hydrate plugs?

(4) How to remove a hydrate plug once it has formed?

(5) How can kinetic inhibitors be certified?

(6) What is the mechanism for naturally inhibited oils?

(7) What are industrial hydrate case studies?

Our focus is offshore systems, from the reservoir to the platform,
because these lines are the most inaccessible and, thus, the most problem-
atic. However, almost all of the content can be applied to onshore
processes and export lines from platforms.

The intent was to combine eight industrial flow assurance perspectives
(from British Petroleum [BP], Chevron, ExxonMobil, and the Total
Petroleum) with three perspectivs from the Colorado School of Mines
to enable resolution of hydrate design and operating problems. In a few
pages the coauthors encapsulated knowledge from their careers to provide
a basis for advancement by flow assurance engineers.

The trend over the last decade has focused on risk management to
manage hydrates in field developments. Thus, the technical perspective
of hydrate flow assurance is changing significantly, from avoidance to risk
management. While industry previously chose to avoid having transporta-
tion equipment operate in the hydrate formation region of pressure and
temperature (i.e., by inhibitor injection), a change in that earlier concept
is to allow hydrate particles to form, while preventing hydrate plug forma-
tion. As this book illustrates, both economic and technical incentives are
provided by adding new hydrate risk management tools to the existing
tools of hydrate avoidance.

Our intention was to combine the practical experience of industry
together with the concepts generated in academia, to state in this concise
volume the basics of the new risk-management methods. We gratefully
acknowledge the flow assurance engineers who contributed to enable this
book: John Abrahamson, Alex Alverado, Guro Aspenes, Torstein Austvik,
Ray Ayres, Jim Bennett, Gary Bergman, Phaneendra Bollavaram, John

i
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Boxall, Jep Bracey, Ricardo Carmargo, Richard Christiansen, Jim Chitwood,
Mike Conner, Chris Cooley, Simon Davies, Emmanuel Dellecasse, Laura
Dieker, Mark Ehrhardt, Havard Eidsmoen, Douglas Estanga, Erik Freer, John
Fulton, Jim Grant, David Greaves, Kathy Greenhill, Arvind Gupta, Ronny
Hanssen, Greg Hatton, Chris Haver, Blake Hebert, Pal Hemmingsen Prof.
Jean-Michel Herri, Scott Hickman, Nikhil Joshi, Sanjeev Joshi, Bob
Kaminsky, Moussa Kane, Sam Kashou, Aftab Khokhar, Dean King, Keijo
Kinnari, Veet Kruka, Roar Larsen, Joe Lederhos, Emile LePorcher, Jin-Ping
Long, Susan Lorimer, Taras Makogon, Patrick Matthews, Ajay Mehta, Dave
Miller, Kelly Miller, Pierre Montaud, Alberto Montesi, Julie Morgan, Alex
Mussumeci, Bob Newton, Lewis Norman, Phil Notz, Bill Parrish, David
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Houston, Texas, Pau, France, and Golden, Colorado
July 2010
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