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Preface

About K-theory

K-theory was developed by Atiyah and Hirzebruch in the 1960s based on work
of Grothendieck in algebraic geometry. It was introduced as a tool in C*-al-
gebra theory in the early 1970s through some specific applications described
below. Very briefly, K-theory (for C*-algebras) is a pair of functors, called K
and K, that to each C*-algebra A associate two Abelian groups Ky(A) and
K;(A). The group Ky(A) is given an ordering that (in special cases) makes it
an ordered Abelian group. There are powerful machines, some of which are
described in this book, making it possible to calculate the K-theory of a great
many C*-algebras. K-theory contains much information about the individual
C*-algebras — one can learn about the structure of a given C*-algebra by
knowing its K-theory, and one can distinguish two C*-algebras from each
other by distinguishing their K-theories. For certain classes of C*-algebras,
K-theory is actually a complete invariant. K-theory is also a natural home
for index theory.

Two applications demonstrated the importance of K-theory to C*-alge-
bras. George Elliott showed in the early 1970s (in a work published in
1976, [18]) that AF-algebras (the so-called “approximately finite dimensional”
C*-algebras; see Chapter 7 for a precise definition) are classified by their or-
dered Kyp-groups. (The K,-group of an AF-algebra is always zero.) As a
consequence, all information about an AF-algebra is contained in its ordered
Ky-group. This result indicated the possibility of classifying a more general
class of C*-algebras by their K-theory.

Another important application of K-theory to C*-algebras was Pimsner
and Voiculescu’s proof in 1982, [34], of the fact that C&,(F2), the reduced
C*-algebra of the free group of two generators, has no projections other than
0 and 1. Kadison had, at a time when it was not known that there exists a
simple unital C*-algebra with no projections other than 0 and 1, conjectured
that Cy(F2) would be such an example. It was shown by Powers in 1975
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X Preface

in [35] that C.,4(F2) actually is a simple C*-algebra, and, as mentioned, Pims-
ner and Voiculescu then showed that this C*-algebra has no non-trivial pro-
jections by calculating its K-theory. Blackadar had a couple of years before
that found another example of a simple unital projectionless C*-algebra [2].

A landmark for the use of K-theory in C*-algebra theory, and for the use
of K-theory for C*-algebras in topology, was Brown, Douglas, and Fillmore’s
development in the 1970s of K-homology (a dual theory to K-theory) via
extensions of C*-algebras (8] and [9]. This theory was generalized by Kasparov
in his K K-theory that encompasses K-theory and K-homology [27].

Today K-theory is an active research area, and a much used tool for the
study of C*-algebras. One current line of research concentrates on general-
izing Elliott’s classification theorem for AF-algebras to a much broader class
of C*-algebras; see [19]. Another active branch of research seeks to prove the
conjecture by Baum and Connes on the K-theory of the C*-algebra Cjy(G)
of an arbitrary group G in a way that generalizes Pimsner and Voiculescu’s re-
sult about C}4(F3). Connes has in his book Noncommutative Geometry, [11],
described how K-theory is useful in the understanding of a big mathemat-
ical landscape that contains geometry, physics, C*-algebras, and algebraic
topology among many other subjects!

Besides actually being useful — in the mathematical sense of the word —
K-theory is fun to study because of the way it mixes ideas from the different
branches of mathematics where it has its roots.

The aim of this book is not to present all the new mathematics that
involves K-theory for C*-algebras, but to give an elementary and, we hope,
easy-to-read introduction to the subject.

About the book

This book first saw the light of day as a set of handwritten lecture notes to a
graduate course on K-theory for C*-algebras at Odense University, Denmark,
in the spring of 1995, given by the first named author and with the two other
authors among the participants. The handwritten notes were TEX'ed and
rewritten in the fall of 1995 as a joint project among the three authors. The
K-theory course has since then been given once more in Odense (in the fall of
1997) and once again in Copenhagen (in the fall of 1998). Besides, a number
of students have taken a reading course based on these notes. We have in this
way received substantial feedback from the many students who have been
subjected to the notes and, as a result, the notes have continuously been
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improved. We started writing this book in winter 1998/99 in order to make
the work that over the years has been put into the notes available to a larger
group of readers.

The book is intended as a text for a one-semester first or second year
graduate course, or as a text for a reading course for students at that level. As
such, the text does not take the reader very far into the vast world of K-theory.
The most basic properties of K and K are covered, Bott periodicity is proved
and the six-term exact sequence is derived. There is a chapter on inductive
limits and continuity of K-theory, and-Elliott’s classification of AF-algebras
is proved. In the last chapter of the book, the theory developed is used to
show that each pair of countable Abelian groups arises as the K-groups of a
C*-algebra.

An effort has been made to make the text as self-contained as possible.
Chapter 1 contains an overview, mostly without proofs, of what the reader
should know, or should learn, about C*-algebras. The theory in the book is
illustrated with examples that can be found in the exercises and in the text.

The subject of this book is treated in several other textbooks, most notably
in Bruce Blackadar’s book, [3]. Other books treating K-theory for operator
algebras include Niels Erik Wegge-Olsen’s detailed treatment, [40], Gerard
Murphy’s book, [29], and the recent books by Ken Davidson, [15], and by
Peter Fillmore, [20]. Our treatment is indebted to these books, in particular
to Bruce Blackadar’s book.

We thank Hans Jgrgen Munkholm for sharing with us his point of view
on K-theory. We thank also George Elliott for many valuable comments.
Last, but not least, we thank those who have read and commented on (earlier
versions of) this text. Thanks are especially due to Piotr Dzierzynski, Jacob
Hjelmborg, Johan Kustermans, Mikkel Mgller Larsen, Franz Lehner, Jesper
Mygind, Agata Przybyszewska, Rolf Dyre Svegstrup, and Steen Thorbjgrnsen.

Sections, examples, and paragraphs in the book marked with an asterisk *
contain digressions which the reader can omit or postpone without losing the
logic of the overall exposition. Two possible shorter routes through the book
are

(1) Chapters 1-4 and Chapters 8-12, or

(2) Chapters 1-7.
Chapter 7 and Chapter 13 can be omitted or postponed.
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The book has a home page
http://www.math.ku.dk/~rordam/K-theory.html

that will contain a list of corrections to the book. Readers are strongly
encouraged to report on any mistakes they may have found in the book (see
the home page for address information). We also welcome suggestions of how
to make the book better.
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Chapter 1

C*-Algebra Theory

This chapter contains some basic facts about C*-algebras that the reader is
assumed to be (or become) familiar with. There are very few proofs given in
this chapter, and the reader is referred to other sources, for example Murphy’s
book [29], for details.

1.1 C*-algebras and *-homomorphisms

Definition 1.1.1. A C*-algebra A is an algebra over C with a norm a — ||a||
and an involution a — a*, a € A, such that A is complete with respect to the
norm, and such that ||ab|| < ||a|| ||b]| and ||a*a|| = ||a||? for every a, b in A.

The axioms for a C*-algebra A above imply that the involution is isometric,
i.e., ||la|| = ||a*|| for every a in A.

A C*-algebra A is called unital if it has a multiplicative identity, which will
be denoted by 1 or 14. A *-homomorphism ¢: A — B between C*-algebras
A and B is a linear and multiplicative map which satisfies p(a*) = ¢(a)* for
all a in A. If A and B are unital and ¢(14) = lp, then ¢ is called unital
(or unit preserving). A C*-algebra is said to be separable if it contains a
countable dense subset.

1.1.2 Sub-C*-algebras and sub-*-algebras. A non-empty subset B of a
C*-algebra A is called a sub-*-algebra of A if it is a *-algebra with the oper-
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2 CHAPTER 1. C*-ALGEBRA THEORY

ations given on A, that is, if it is closed under the algebraic operations:

addition AXA— A, (a,b) » a+b,
multiplication AxA— A, (a,b) — ab,
adjoint A— A, a— a*,
scalar multiplication Cx A — A, (a,a) = «aa.

A sub-C*-algebra of A is a non-empty subset of A which is a C*-algebra with
respect to the operations given on A. Hence, a non-empty subset B of a
C*-algebra A is a sub-C*-algebra if and only if it is norm-closed and closed
under the four algebraic operations listed above.

The norm-closure of a sub-*-algebra of a C*-algebra is a sub-C*-algebra.
This follows from the fact that the four algebraic operations above are con-
tinuous.

Let A be a C*-algebra, and let F' be a subset of A. The sub-C*-algebra of
A generated by F, denoted by C*(F), is the smallest sub-C*-algebra of A that
contains F. In other words, C*(F) is the intersection of all sub-C*-algebras
of A that contain F. The C*-algebra C*(F) can be concretely described as
follows. For each natural number n put

Wop={Z1Z2: Tn:z; e FUF"},

where F* = {z* | z ¢ F'}, and put W = |J;2, W,,. The set W is the set of all
words in FUF*, and W, is the set of words of length n. Using that W = W*
and that W is closed under multiplication, we see that the linear span of W
is a sub-*-algebra of A. It follows that

C*(F) =spanW.

We write C*(a,, a2, .. .,a,) instead of C*({a1,as,...,a,}), when ay,ay,...,a,
are elements in A.

Theorem 1.1.3 (Gelfand—Naimark). For each C*-algebra A there ezist a
Hilbert space H and an isometric *-homomorphism ¢ from A into B(H), the
algebra of all bounded linear operators on H. In other words, every C*-alge-
bra is isomorphic to a sub-C*-algebra of B(H). If A is separable, then H can
be chosen to be a separable Hilbert space.

A proof can be found in [29, Theorem 3.4.1]. The Hilbert space H is obtained
by viewing A as a vector space, equipping it with a suitable inner product



