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Abstract

The aim of the paper is twofold. On one hand we want to present a new
technique called p-caloric approximation, which is a proper generalization of the
classical compactness methods first developed by DeGiorgi with his Harmonic Ap-
proximation Lemma. This last result, initially introduced in the setting of Geo-
metric Measure Theory to prove the regularity of minimal surfaces, is nowadays
a classical tool to prove linearization and regularity results for vectorial problems.
Here we develop a very far reaching version of this general principle devised to
linearize general degenerate parabolic systems. The use of this result in turn allows
to achieve the subsequent and main aim of the paper, that is the implementation
of a partial regularity theory for parabolic systems with degenerate diffusion of the

type
(0.1) Oyu — diva(Du) =0,

without necessarily assuming a quasi-diagonal structure, i.e. a structure prescribing
that the gradient non-linearities depend only on the explicit scalar quantity |Dul.
Indeed, the by now classical theory of DiBenedetto (Degenerate parabolic equations,
Universitext, New York, NY, Springer-Verlag, 1993) introduces the fundamental
concept of intrinsic geometry and allows to deal with the classical degenerate par-
abolic p-Laplacian system

(0.2) dyu — div(|DulP~2Du) = 0
and more generally with systems of the type
(0.3) Ayu — div(g(|Du|)Du) = 0.

Here, we take such regularity results as a starting point and develop a partial reg-
ularity theory — regularity of solutions outside a negligible closed subset of the do-
main — applying to general degenerate parabolic systems of the type (0.1), thereby
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vi ABSTRACT

not necessarily satisfying a structure assumption as (0.3). The partial regular-
ity rather than the everywhere one, is natural since even in the non-degenerate
case, when considering systems with general structure, singularities may occur.
The proof of the almost everywhere regularity of solutions is then achieved via
an extremely delicate combination of local linearization methods, together with a
proper use of DiBenedetto’s intrinsic geometry: the general approach that consists
in performing the local analysis by considering parabolic cylinders whose space-
time scaling depend on the local behavior of the solution itself. The combination
of these approaches was exactly the missing link to prove partial regularity for gen-
eral parabolic systems considered in (0.1). In turn, the implementation realizing
such a matching between the two existing theories is made possible by the p-caloric
approximation lemma. More precisely, the proof involves two different kinds of
linearization techniques: a more traditional one in those zones where the system
is non-degenerate and the original solution is locally compared to solutions of a
suitable linear system, and a degenerate one in the zones where the system is truly
degenerate and the solution can be compared with solutions of systems as (0.2) via
the p-caloric approximation lemma.
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CHAPTER 1

Introduction and Results

The aim of this paper is twofold: the first, and main one, is to establish a rather
satisfying regularity theory for general parabolic systems with degenerate diffusion;
the second one, of more technical and specialized character, is to introduce a suitable
analog of the classical harmonic approximation methods of DeGiorgi’s pioneering
work [14] from the elliptic setting, which in turn is the key to a regularity theory
for degenerate parabolic systems.

1.1. A short introduction to the regularity of parabolic systems

A brief description of the present status of the regularity theory for general
parabolic systems cannot begin but with the observation that already in the case
of elliptic systems the so called partial reqularity — also called almost everywhere
regularity — is in general the best one can usually expect, and therefore the same
happens in the case of parabolic systems. Indeed, since the important counterex-
ample of DeGiorgi [15] - see also [50, 51, 59] — it is known that when dealing with
general elliptic systems of the type

diva(Du) =0 or div(A(z)Du) =0

considered in an open subset 2 C R™, solutions might possess singularities, and
therefore everywhere regularity fails to hold in general. Instead, one can show
partial regularity of solutions, i.e. they are regular outside a negligible closed subset,
thereby called the singular set of the solution:

(1.1) uweCL¥(Qu,RY)  and  |Q\Q]=0

loc

and we refer to [33, 35, 48] for an account of the theory and a list of references.
Eventually estimates for the Hausdorff dimension and boundary regularity can be
inferred [46, 47, 24]. Let us mention that related results for integral functionals
in the calculus of variations are obtained in [40, 41]. The above partial regularity
results for elliptic systems have been extended to the case of parabolic systems of
the type

(1.2) Oru = div a(Du)

and we refer for instance to [6, 8, 27, 29, 53, 54| for the most recent and sharp
theorems on the issue. Let us meanwhile remark that the system in (1.2), as all
the other parabolic ones in this paper, will be considered in the cylindrical domain

QT i ) ¥ (O,T),

where (2 C R™ is an open bounded domain with n > 2. Such partial regularity
results are however obtained under a non-degenerate ellipticity assumption, both
in the case of systems and in that of variational integrals, and this amounts to

1



2 1. INTRODUCTION AND RESULTS

require — when considering problems with so called p-growth, that is when we
prescribe on a(Du) a growth bound in terms of |Du|P~! — that

(13) w1+ g?) T | < (Da(g)é, &) for every ¢,6 € RM™.

We are of course assuming that u takes its values in RN and N > 1. An assumption
like (1.3) is however not satisfied for important examples as for instance the p-
Laplacian system

(1.4) div(|DulP~2Du) =0
and its evolutionary version, the parabolic p-Laplacian system:
(1.5) dyu = div(|DuP~2Du) .

The first important observation is that, both the system in (1.4) and the one in
(1.5), present a central, additional feature: the gradient non-linearity only depends
on the scalar quantity |Du|. As a matter of fact the interior regularity results
available for (1.5) readily extend to systems of the type

(1.6) Oyu = div(g(|Du|)Du) ,
assuming that
(1.7) g(|Dul) ~ |DulP~2,

where the symbol ~ must be made precise in a suitable way. Assumption (1.7)
tells, once again, that the gradient non-linearity depends on Du via the modulus
|Dul|. This is in fact of crucial importance, already in the elliptic case, in order to
pass from partial regularity to everywhere regularity and proving that the singular
set is in fact empty. Indeed, an approach to the regularity of solutions to (1.4)
has been given for the first time by Uhlenbeck [60] - the scalar case N = 1 had
been previously treated by Ural’tseva [61] - who proved that solutions to (1.4) are
locally of class C1® for some o € (0,1). We remark that up to now the structure
condition
a(Du) = g(|Du|)Du

is essentially the only one known to imply the everywhere interior regularity of
solutions, and this fact goes back to the work of Uhlenbeck, as just mentioned; for
a recent updated survey we refer for instance to [48].

The regularity theory for evolutionary systems of the type (1.5) and (1.6) is
instead a fundamental achievement of DiBenedetto € Friedman, which is reported
in the papers [18, 19, 20|, where the concept of intrinsic geometry has been exten-
sively used in order to obtain the relevant local estimates. For the C'*-estimate
see also [62]. The intrinsic geometry approach of DiBenedetto [16], which is by now
classical and that is described at length in the monograph [17], is actually at the
origin of virtually all the techniques developed up to now to prove regularity results
for degenerate parabolic problems, see for instance [3, 5, 7, 21, 38, 39, 52|. This
approach prescribes, roughly speaking, that the regularity of solutions to evolution-
ary equations as in (1.5) has to be studied by considering the behavior of solutions
on shrinking cylinders whose space-time scaling — actually the ratio between the
space and time size — varies according to the size of the solution itself, typically
the modulus of u or of Du, according to the kind of regularity under consideration.
The reason why the method of intrinsic scaling is necessary can be easily under-
stood by means of simple homogeneity consideration: problems as (1.5) are not
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scaling invariant in the sense that multiplying a solution by a constant does not
yield a solution of another, similar problem. Therefore the resulting lack of homo-
geneity of local estimates obtainable in the usual parabolic cylinders does not allow
for the typical elliptic iterations, and must be therefore re-balanced in some way.
The idea is now to pass from inhomogeneous integral inequalities to homogeneous
ones involving integrals with solution-dependent supports. To outline how such an
intrinsic approach works, let us consider a zone, actually a cylinder @, where,
roughly speaking, the size of the gradient is approximately A — possibly in some
integral averaged sense — i.e.

(1.8) |Du| =~ X>0.
In this case we shall consider cylinders of the type
(1.9) Q = QY (20) = By(xo) x (to — A*7P0%, to + A*P0?),

where B,(z9) € R" is the usual Euclidean ball centered at x and with radius ¢ > 0
and zg = (zg,%g). Then cylinders of this type are just the balls with respect to the
metric

(1.10) dr((z,t), (y,s)) = max {|x —yl, V/AP2t — sl} .

Note, when A = 1, the cylinder and the metric in (1.9) and (1.10) reduce to the
usual parabolic cylinder given by

(1.11) Qo(20) = Q" (20) = By,(xo) x (to — 0°,t0 + 0°) ,
and the corresponding standard parabolic metric defined by

dp ((2,1), (4, )) i= max {|o — yl, VE=3]} -

Indeed, the case p = 2 is the only one admitting a non-intrinsic scaling and for which
local estimates have a natural homogeneous character. In this case the systems in
question are non-degenerate; while in this paper we shall not be interested in the
case p = 2, treated at length in other parts of the literature, see for instance
[27, 6, 9] and related references. For the sake of exposition we shall several times
restrict to the situation where p # 2, although several of the arguments proposed
here can be easily extended to the case p = 2. The heuristics of the intrinsic
scaling method can now be easily described as follows: assuming that in a cylinder
Q as in (1.9) the size of the gradient is approximately A, we have that the system
n (1.5) looks like
dyu = div(N\P~2Du)
which after a scaling, that is considering
Bi1(0) x (—=1,1) 3 (z,t) = v(x,t) := u(xo + oz, to + NP~20%t)
behaves exactly as the heat system
Ov=Av in B;(0) x (—1,1),

which admits in fact perfect a priori estimates for solutions. The success of this
strategy is therefore linked to a rigorous construction of such cylinders in the context
of intrinsic definitions. Indeed, the way to express a condition as (1.8) is typically
in an averaged sense like for instance

1 E »
(1.12) (IQ(_A)I /QW | Dul|? dz> - (][;?w |Dul? dz) ~ A, z = (z,t)
e Q e
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or

Dudz| ~ \.

‘ e 1
The problematic aspect in (1.12) clearly relies in the fact that the value of the
integral average must be cornparable to a constant which is in turn involved in the
construction of its support @, Sk Q"\)( o), exactly according to (1.9).

Let us now briefly turn to the case of standard non-degenerate systems with
linear growth i.e. p = 2, to recall the known approaches of partial regularity
and local linearization. On the side of classical partial regularity proofs, the
main technique usually employed is basically a linearization one. The basic idea
can be now summarized as follows: A point zg € Q7 is by definition regular iff
the oscillations of the gradient of the solution are small in a quantifiable way in
a neighborhood of it. Vice versa, the viewpoint of partial regularity is that this
situation is achieved provided the oscillations of the gradient are a priori small in
a neighborhood of the point in question, this smallness being measured, as usual,
in an averaged integral way. Indeed, functionals as the mean square deviation of
the gradient with respect to its average are useful at this stage to express a small
oscillation property. The basic assertion of partial regularity is now that a point zg
is regular iff a smallness condition of the type

(1.13) ][ |Du — (Du)g|*dz < e, with (Du)g ][Dudz,

is satisfied for a standard cylinder @ = Q,(2o) centered at zy. Here the number &
implying the regularity of the gradient in general depends on the structure condi-
tions imposed on the system, and in most of the cases also on the point zg where @
is centered. Condition (1.13) is in turn used to implement a comparison argument
aimed at comparing the original solution u to the solution v of a linear parabolic
system with constant coefficients of the type

(1.14) dyv = div (Da((Du)g)Dv) ,

with v agreeing with u on the parabolic boundary of @, or at least with v close in an
integral sense to w. The role of a smallness assumption as (1.12) is then to quantify
the closeness of the original solution to an affine map whose coefficient is given
by (Du)g, so that the system (1.14) can be considered as a Taylor approximation
of the original system. On the other hand, since (1.14) is a linear system, good
regularity estimates are available for the solution v and in series such estimates can
be conveyed to u, thereby proving that Du is Holder continuous in a neighborhood
of the center 2y of (). It is of course at the core of partial regularity to prove
that a smallness condition formulated in an integral way as in (1.13) is sufficient to
make the whole machinery work and to prove the Holder continuity of Du. This
is the standard approach in elliptic and parabolic regularity theory: to commute
integral bounds on the oscillation of Du in L? — or something near it — in pointwise
bounds, that is in L*°. Needless to say, since a condition of the type (1.13) is
only satisfied almost everywhere, the above techniques ultimately lead to almost
everywhere regularity in the sense of (1.1).

The first of the methods outlined in the preceding lines, i.e. the intrinsic scaling
method, is, as already mentioned above, at the core of DiBenedetto’s viewpoint on
parabolic regularity and allows for the proof of interior regularity of solutions to
systems as (1.5), while the linearization method used to prove partial regularity
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goes back to the classical papers of DeGiorgi [14], and Morrey [49] as far as the
non-parametric case is considered.

The aim of this paper is now to go beyond; in fact, building on both the ap-
proaches, and especially on DiBenedetto’s one, we treat the case of regularity for
general parabolic systems of the type (1.2) which turn out to feature a degenerate
diffusion. This means that an assumption of the type (1.3), usually employed in
the literature, is here no longer considered. Needless to say, at the same time,
we shall not assume a quasidiagonal structure as (1.6). The only assumption we
shall make on the kind of degeneration, which is necessary to quantify the rate of
parabolicity of the systems in question, is that the operator a(-) degenerates as the
p-Laplacian at the origin, see (1.17) below, therefore a priori prescribing the kind
of degeneration at the origin. In other words, the ultimate goal of this paper is
to produce methods to match the partial regularity theory available for the case
of non-degenerate elliptic and parabolic problems with the degenerate techniques
available for the evolutionary p-Laplacian type systems, finding a way to combine
the techniques of intrinsic scaling and partial regularity, both outlined above. To
achieve this we introduce a number of new tools and methods devised to combine
these two approaches, in particular the classical linearization and comparison ar-
guments typical of partial regularity proofs as those using excess functionals as
in (1.13), will be implemented in the context of DiBenedetto’s intrinsic geometry,
eventually leading to a very delicate and technically challenging interplay.

1.2. The main regularity theorem and technical novelties

The specific assumptions we are considering are now listed as follows. Through-
out the paper we consider degenerate parabolic systems of the type

(1.15) Oyu = div a(Du) in Qp,

where a: RN" — RV is a continuous vector field such that a € C1(RNV™ RN) if
p>2and a € CHRN™\ {0},RV") if p < 2, satisfying the p-growth condition
(1.16) la(@)] < L(1+ |g])P~,

for any ¢ € R¥™ and some L > 1.

REMARK 1.1. We remark that in this paper — unless otherwise explicitly stated
— we shall not consider the case p = 2 which falls into the realm of non-degenerate
problems and has been already treated — actually under more general assumptions
—in the paper [27], to which we refer for results and techniques.

We assume that the vector-field a(-) admits a p-Laplacian type behavior at the

origin in the sense that the limit relation
. a(sq) -2
1.1 lim ——= = |q/?

(1.17) i 1 lal""q
holds uniformly in {g € RN™ : |q| = 1}. Moreover, a(-) is assumed to be strictly
quasi-monotone, i.e. there exists a constant 0 < v < 1 such that for all ¢ € RN"
and ¢ € C$° (B, RY) there holds

o P=2
(118) v [ (4P +1D¢P) T Do dr < [ al+Dy)-Deda,
J By B,
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a condition that can be easily seen to be equivalent to

-2
l// (Iaf? + |Dg[?) =" |Dpf? dz < / a(g+ Do) - Dpdz,
Q1 Q1

whenever ¢ € C§°(Q1, RY). Conditions (1.17) and (1.18) roughly speaking describe
the ellipticity properties of the vector field a(-). The first one serves to specify the
rate of degeneration at zero — that is the only point where the operator turns out
to be degenerate — and it says that the operator degeneration is of the type of
the p-Laplacian. Assumption (1.18) is a way to prescribe the ellipticity at those
matrices which are different from zero. For instance, whenever a is assumed to be
monotone — an additional stronger assumption that we do not actually need in this
paper — the following ellipticity condition is implied:

c(v)|qlP2|€]* < (Da(q)€,€)  for every ¢, & € RN™,

which is a degenerate form of (1.3), and tells that the system in question is non-
degenerate only when ¢ # 0.

On the gradient of the vector-field a(-) we do not impose any uniform growth
or continuity-condition. We shall merely assume that for given M > 0 there exists
Kk > 0 such that

(1.19) |Da(q)| < LrnmlglP~2,

for any ¢ € RNV™ such that |g| < M and |q| # 0 if p < 2, and a non-decreasing
modulus of continuity wys: [0,00) — [0, 00) with

limwpr(s) =0
im wa (s)
such that w?,(-) is concave and

ql*+|q

LwM(ﬁ%}ﬁl‘;—,;) (]ili,t@ii)z—;z for p<2

lal*lal

Lo (580 ) (o +132) T for p>2
(1.20)  [Da(g) — Da(q)| <

whenever ¢,§ € RV such that 0 < |g|,|g| < M. The last two assumptions are
rather standard in the regularity theory of vectorial elliptic and parabolic problems
and important in order to perform the basic linearization arguments when starting
from the non-degenerate cases; see for instance [26, 31, 56| and related references.

The notion of (weak) solution adopted here, and in the rest of the paper, is of
course the usual distributional one and prescribes of course that a map

(1.21) u e C°(0,T; L2(Q,RN)) N LP (0, T; W'P(Q,RY))
is a (weak) solution to (1.15), under the assumption (1.16), iff

/ (u- O — a(Du) - Dp) dz =0
Qr

holds for every ¢ € C§°(2p,RY). We now can state our partial regularity result.
THEOREM 1.2 (Main regularity result). Let
(1.22) 2 <p#2

and
ue C°(0,T; L*(Q,RN)) N LP (0, T; WHP(Q,RY))
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be a weak solution of the parabolic system (1.15) under the assumptions (1.16)
- (1.20). Then, there exist « = a(n,N,p,v,L,k3) € (0,1) and an open subset
Qo C Qr such that

Due Cp®(Qo,R¥)  and  |Qr\Qo|=0.

loc

In other words the previous result shows that in a neighborhood of a point
2y € Qo the spatial derivative Du is Hélder continuous with Holder-exponent a with
respect to the standard parabolic metric defined in (1.11). This result extends the
classical partial regularity available for non-degenerate systems to those admitting
a degeneration of p-Laplacian type at the origin.

REMARK 1.3 (On condition (1.22)). We remark that the lower bound on p
appearing in (1.22) is absolutely natural to prove regularity in such a context; see
for instance [17] for a larger discussion and conterexamples. The assumption p # 2
is actually non-restrictive. In Remark 1.1 we already mentioned that the case p = 2
turns automatically out to be non-degenerate and a partial regularity result can be
obtained under weaker assumptions; for results and techniques in this case we refer
to the paper [27].

As mentioned in the previous section, the proof of Theorem 1.2 is based on
a very delicate interaction between the two approaches, i.e. the intrinsic scaling
method and partial regularity and local linearization. The Hélder continuity of the
spatial gradient Du around a (regular) point z; is achieved via a suitable decay of
an excess-functional ®(-) of the type appearing in (1.13) and which measures in
an integral way the oscillations of the gradient Du, being simultaneously linked to
the structure of the problem under consideration. In fact, in this case ®(-) takes a
more peculiar form. For p > 2 — a case which in this introduction we restrict to for
clearness of exposition — v € LP(0,T; W'P(Q,RV)) and Q,(20) C Qr we set

(s 20, ) == ][ (D + 1Dv=(Pr)ayeo
elzo

(1.23) *|Dv = (Dv)q, (z0)|* d2,

p=2
) 2

where (Dv)q,(z,) denotes the mean value of Dv on Q,(20). Here Q,(20) denotes
the standard parabolic cylinders defined in (1.11).
The ultimate goal is to prove a decay estimate of the type

(1.24) D(u; 29,0) < co®

at the regular point 2y and eventually in a neighborhood of 2, an inequality which
by mean of a standard integral characterization of Holder continuity due to Cam-
panato and Da Prato implies the Holder continuity of the Dw. In turn, in order
to apply the intrinsic geometry approach we shall define an intermediate excess
functional incorporating an auxiliary scaling parameter A > 0; this is defined by

@ (v; 20, 0) :=][

QM (20

p=2

) (IDV) g oy * + 1DV=(Dw) g ) [°)
(1.25) - |Dv — (Dv)Qy)(zD)F dz,

where Qg,'\) (20) is defined in (1.9) and (Dv) QM (20) denotes the mean value of Dv on

QE,’\)(zo); that is, we are using an excess functional defined on intrinsic cylinders
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relating the scaling A of the domain of integration to the gradient Du in a way de-
scribed in (1.12). Note that @, (v; 29, 0) with A = 1 reduces to the excess functional
®(v; 29, ) from (1.23), and as it will be clear from the proof, this excess functional
will be eventually linked to the one in (1.23) during the proof, when controlling
the size of the gradient during certain iteration schemes. Specifically, at every scale
the value of the number A will be related to the solution via an intrinsic relation
of the type (1.12). In a second step we show that the values of the numbers A
stay bounded as p — 0 provided we are in a neighborhood of a regular point. Fur-
thermore, if Du(zp) = 0 then A goes to zero, when p — 0. Therefore the intrinsic

— l.e. stretched in time — cylinders Qg’\)(zo) will be ultimately comparable to the
standard parabolic ones in a neighborhood of a regular point zy with Du(zg) # 0.
This features a new technical approach and means that in such zones the two excess
functionals in (1.23) and (1.25) will be finally comparable.

At this point it is rather clear that the interaction between the role of the intrin-
sic geometry — which appears since the problem is degenerate — and the standard
linearization methods is the crucial point of the proof of Theorem 1.2, since the
shape of the cylinders, and therefore of the estimates involved, change according
to the local degeneration rate of the system. A closer look to the strategy of the
proof, which, using different comparison techniques according to whether we are in
a degenerate point or in a non-degenerate one — a common alternative occurring
in degenerate problems, see for instance [26, 56| — presents outstanding technical
difficulties. The strategy is roughly to distinguish between two regimes.

The non-degenerate regime (NDR). We consider an intrinsic cylinder

(Q’\)(zo) and we say we are in the non-degenerate regime when the average of
the gradient is larger than the excess functional (whose value has to be understood
in this context as a re-normalization factor in the local linearization procedure):

®(u; 20, 0) € |(Du) gon ()1
Here, A is again coupled to the gradient in an intrinsic way according to a relation
as (1.12). More precisely, we assume that

(D) g0 (29| = A

This last relation actually makes Qg,)‘)(zo) an intrinsic cylinder. In this situation
we adopt the local linearization procedure from the partial regularity theory and
locally compare the solution u with a solution v of a linear parabolic system with
constant coefficients, i.e. a problem which is non-degenerate; this is achieved via
the method of A-caloric approximation from [29, 54]. Then good a priori estimates
for v are indeed inherited by u in the regularization process. For this we refer to
Section 8.1.

The degenerate regime (DR). This case refers to the situation when the
gradient is in average smaller than the excess functional in the sense that

|(Du) < Dy (u;20,0) and I(Du)Q(é,\)(ZD)I < e);

Q%*’(zo)|p
or
(D “)Qﬁ*’(z

This situation is considered in Section 8.2 and involves the use of one of the main
tools developed in this paper, the p-caloric approzimation lemma. In this situation

| < A
0)
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we compare the original solution u with the solution w of a degenerate parabolic
system of p-Laplacian type

(1.26) dyw = div(e|Dw|P~2Dw)

and then proceed taking advantage of the fact that also in this case the solution
w is regular and enjoys certain a priori estimates, eventually inherited by w. It is
precisely this point where we exploit the fact that we are using intrinsic cylinders:
indeed only the use of such a geometry makes a comparison between w and w
possible since alone on such cylinders regularity properties of w can be expressed
in a way that allows them to be transferred to u. At this stage essentially the
method of intrinsic geometry described in the previous section comes into the play.
In this context it is an important part of the proof to put the original estimates of
DiBenedetto & Friedman in ready-to-use form; see Chapter 7. We note that the
closeness of the original solution u to w is a consequence of the assumption (1.17),
which prescribes the type of degeneration of the original parabolic system at the
origin; once used in a suitable linearization scheme assumption (1.17) reads as a
closeness condition between u and the solution to an asymptotic system as (1.26).

The linearization methods corresponding to the non-degenerate regime (NDR)
and the degenerate regime (DR) are contained in any case in Chapter 6, where the
perturbation lemmas necessary to the use of the A-caloric and p-caloric approxi-
mation lemmas are reported.

Finally, the degenerate and the non-degenerate regime can be matched via an
extremely delicate iteration procedure where keeping the control of the constants
is by no means a trivial fact; see Section 8.3 and the tables with the constant
dependencies can be found in Remark 8.4.

The scheme of proof outlined above also yields a precise characterization of the
singular set which is displayed in the next theorem.

THEOREM 1.4 (Description of the singular set). Under the assumptions of The-
orem 1.2, we know that the singular set ¥ = Qp\ Qo is contained in X1 UXa, where

Y= : lim inf @ (u;

1 {zo € Qr 1121&)11 (u; 20, 0) > 0},

Yy = {zo € Qp : limsup |[(Du)q, (z)| = oo} .
ol0

Moreover, if for some regular point zg € Qr \ (X1 U Xa) there holds Du(zy) # 0,
then there exists o > 0 such that Du € C**/?(Q4(20), RN™) for any a € (0,1).

1.3. The p-caloric approximation technique

As mentioned above, one of the aims of this paper is to introduce a compactness
technique for treating the regularity and the linearization of degenerate parabolic
systems as in (1.15). Such compactness methods are a powerful tool in the modern
theory of partial differential equations in that their use allows to simplify approaches
and proofs, and to often achieve optimal regularity results unreachable otherwise.
Here, by compactness methods we mean the use of convergence methods in order
to prove certain inequalities, which, in principle, could also be proved by direct,
analytical arguments. Such analytical methods are very often delicate, and do not
always lead to the optimal result one would expect; this is one of the reasons for
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using instead indirect methods. A basic, elliptic example of such methods is given
by the following:

THEOREM 1.5 (p-harmonic approximation lemma [25]). Let n, N € N with
n > 2 and B be the unit ball in R™ and p > 1. For every € > 0 there exists a
positive constant &y € (0,1] depending only on n, N,p and € such that the following
is true: Whenever u € WYP(B,RN) satisfying ||Dul|r»sy < 1 is approzimately
p-harmonic in the sense that

(1.27)

/ |Du|P~2Du - Dy dx
B

< dosup | Dy
B

holds for all ¢ € C3°(B,RYN), then there exists a map h € WhP(B,RY), such that
div (|Dh[P=2Dh) = 0 in B, and such that

(1.28) / IDhPdz <1  and / h— P de < &P
B B

The case p = 2 of Theorem 1.5 has been used by DeGiorgi in his fundamental
paper on the regularity of minimal surfaces [15] and eventually by Simon [58]
to study the regularity of harmonic maps, while a more general version — the A-
harmonic approximation method — has been introduced by Duzaar & Steffen [30] in
the setting of Geometric Measure Theory; this was later on applied in the setting
of elliptic systems in [23] to yield an optimal regularity result. The case p # 2
has been proved in [25] and was used to establish regularity results for various
degenerate problems [25, 26]. The difficulty in the case p # 2 obviously relies in
passing to the limit in the vector field, since the vector field involved is non-linear,
and plain weak convergence arguments do not suffice.

A first parabolic extension — suitable for non degenerate problems and involving
linear operators — has been given in the papers [27, 29, 54, 6], while a general
non-linear parabolic version of Theorem 1.5 — together with its application to the
regularity of degenerate parabolic problems — was still lacking; we refer to the survey
paper [28] for an updated overview on compactness methods.

The second main result of the paper is in fact concerned with this last gap,
thereby providing a suitable parabolic analog of Theorem 1.5, that we indeed call
the p-caloric approximation lemma, see Theorem 1.6 below. This result indeed pro-
vides an analog which allows to approximate solutions of the parabolic p-Laplacian
system — or even more general degenerate parabolic systems — with exact solutions
of the system, and therefore to perform the local linearization methods necessary
to prove partial regularity as explained in the previous section.

For the sake of clearness, in this introductory part we report a version of the
p-caloric approximation lemma for the model case given by parabolic p-Laplacian.
However, our methods also allow to treat more general vector-fields A(z,w) =~
|w|P~2w, without any further effort and therefore we prove the result for general
vector fields with a p-Laplacian structure at the origin, also allowing a dependency
on the variable z = (z,t). For the precise structure conditions on A4 we refer
the reader to Chapter 4. At this stage we state the p-caloric approximation for
the degenerate case p > 2 only, again for the sake of clearness. Later on we also
provide a version for the singular case 2n/(n + 2) < p < 2, whose proof needs
certain adjustments compared to the case p > 2. This can be found in Section 4.2,
Theorem 4.5. For the notation used in the following we refer to Section 2.1 below.



