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Preface

It has been 15 years since publication of the first edition of
Principles of Fluorescence Spectroscopy. This first vol-
ume grew out of a graduate-level course on fluorescence
taught at the University of Maryland. The first edition was
written during a transition period in the technology and
applications of fluorescence spectroscopy. In 1983, time-
resolved measurements were performed using methods
which are primitive by today’s standards. The dominant
light sources for time-resolved fluorescence were the
nanosecond flashlamps, which provided relatively wide
excitation pulses. Detection was accomplished with rela-
tively slow response photomultiplier tubes. In the case of
phase-modulation fluorometry, the available instruments
operated at one or two fixed light modulation frequencies
and thus provided limited information on complex time-
resolved decays. Data analysis was also limited because of
the lower information content of the experimental data.

Much has changed since 1983. The dominant light
sources are now picosecond dye lasers or femtosecond
Titanium: sapphire lasers. In the case of phase-modulation
fluorometry, frequency-domain instrumentation now op-
erates over a range of light modulation frequencies, allow-
ing resolution of complex decays. The time resolution in
both the frequency and the time domain has been increased
by the introduction of high-speed microchannel plate
photomultiplier tubes. Data analysis has become increas-
ingly sophisticated, not only because of the availability of
more powerful computers, but also because of the avail-
ability of additional data and the increased resolution
available using global analysis. These advanced experi-
mental and analysis capabilities have been extended to
provide resolution of complex anisotropy decays, confor-
mational distributions, and complex quenching phenom-
ena.

Another important change since 1983 has been the ex-
tensive development of fluorescent probes. Early fluores-
cent probes were those derived from histochemical
staining of cells, a limited number of lipid and conjugat-

able probes, and, of course, intrinsic fluorescence from
proteins. Today the menu of fluorescent probes has ex-
panded manyfold. A wide variety of lipid and protein
probes have been developed, and probes have become
available with longer excitation and emission wavelengths.
There has been extensive development of cation-sensing
probes for use in cellular imaging. The nanosecond barrier
of dynamic fluorescence information has been broken by
the introduction of long-lifetime probes.

Another example of the rapid expansion of fluorescence
is DNA sequencing technology. Prior to 1985, most DNA
sequencing was performed using radioactive labels. Since
that time, sequencing has been accomplished almost ex-
clusively with fluorescent probes. The fluorescence tech-
nology for DNA sequencing is advancing rapidly owing to
the goal of sequencing the human genome. Finally, who
would have expected in 1983 that the gene for the green
fluorescent protein could be introduced into cells, with
spontaneous folding and formation of the fully fluorescent
protein?

Parts of this book were influenced by a course taught at
the Center for Fluorescence Spectroscopy, which has been
attended by individuals from throughout the world. How-
ever, the most important factor stimulating the second
edition was the positive comments of individuals who
found value in the first edition. Many individuals com-
mented on the value of explaining the basic concepts from
their fundamental origins. This has become increasingly
important as the number of practitioners of fluorescence
spectroscopy has increased, without a significant increase
in the number of courses at the undergraduate or graduate
level.

In this second edition of Principles of Fluorescence
Spectroscopy, I have attempted to maintain the emphasis
on basics, while updating the examples to include more
recent results from the literature. There is a new chapter
providing an overview of extrinsic fluorophores. The dis-
cussion of time-resolved measurements has been ex-
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panded to two chapters. Quenching has also been ex-
panded to two chapters. Energy transfer and anisotropy
have each been expanded to three chapters. There is also a
new chapter on fluorescence sensing. To enhance the use-
fulness of this book as a textbook, each chapter is followed
by a set of problems. Sections which describe advanced
topics are indicated as such, to allow these sections to be
skipped in an introductory course. Glossaries of com-
monly used acronyms and mathematical symbols are pro-
vided. For those wanting additional information, Appendix
III contains a list of recommended books which expand on
various specialized topics.

In closing, I wish to express my appreciation to the many
individuals who have assisted me not only in preparation
of the book but also in the intellectual developments in my
laboratory. My special thanks go to Ms. Mary Rosenfeld
for her careful preparation of the text. Mary has cheerfully
tolerated the copious typing and numerous revisions of all
the chapters. I also thank the many individuals who have
proofread various chapters and provided constructive sug-
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gestions. These individuals include Felix Castellano,
Robert E. Dale, Jonathan Dattelbaum, Maurice Eftink,
John Gilchrist, Zygmunt Gryczynski, Petr Herman, Gabor
Laczko, Li Li, Harriet Lin, Zakir Murtaza, Leah Tolosa,
and Bogumil Zelent. I apologize for any omissions.

I also give my special thanks to Dr. Ignacy Gryczynski
and his wife, Krystyna Gryczynska. When I started to write
this book, Ignacy said “just go and write, don’t worry about
the figures.” Many of the excellent figures in this book
were drawn by Krystyna, with the valuable suggestions of
Ignacy. Without their dedicated efforts, the book could not
have been completed in any reasonable period of time. I
also thank Ms. Suzy Rhinehart for providing a supportive
family environment during preparation of this book. Fi-
nally, I thank the National Institutes of Health and the
National Science Foundation for support of my labora-
tory.

J. R. Lakowicz
Center for Fluorescence Spectroscopy, Baltimore



Glossary of Acronyms

2,6-ANS
ASE
BODIPY

CFD
Dansyl

DAPI
DAS
DNS-CI
DPH
EB

FAD

FISH
FITC
FMN
FRET
GFP

HIV

HSA
IAEDANS

IAF
ICT
IRF
LE
MCP
MLC

6-Anilinonaphthalene-2-sulfonic acid
Asymptotic standard error

Refers to a family of dyes based on 1,3,5,7,8-
pentamethylpyrromethene-BF,, or 4,4-di-
fluoro-4-bora-3a,4a-diaza-s-indacene.
BODIPY is a trademark of Molecular
Probes, Inc.

Constant fraction discriminator
5-Dimethylaminonaphthalene-1-sulfonic
acid

4’,6-Diamidino-2-phenylindole
Decay-associated spectra

Dansyl chloride
1,6-Diphenyl-1,3,5-hexatriene

Ethidium bromide

Single-letter code for phenylalanine

Flavin adenine dinucleotide
Frequency-domain

Fluorescence in situ hybridization
Fluorescein-5-isothiocyanate

Flavin mononucleotide

Fluorescence resonance energy transfer
Green fluorescent protein

Human immunodeficiency virus

Human serum albumin
5-((((2-iodoacetyl)amino)ethyl)amino)-
naphthalene-1-sulfonic acid
5-(Iodoacetamido)fluorescein

Internal charge transfer (state)

Instrument response function

Locally excited (state)

Microchannel plate

Metal-ligand complex, usually of a transi-
tion metal (Ru, Rh, or Os)

MLCT
MPE
NADH
NATA
NATyrA
NBD
NIR

Metal-ligand charge transfer (state)
Multiphoton excitation

Reduced nicotinamide adenine dinucleotide
N-Acetyl-L-tryptophanamide
N-Acetyl-L-tyrosinamide
7-Nitrobenz-2-oxa-1,3-diazol-4-yl
Near-infrared

Phenylalanine

Phosphatidylcholine

Photomultiplier tube
1,4-Bis(5-phenyloxazol-2-yl)benzene
2,5-Diphenyl-1,3,4-oxadazole
2,5-Diphenyloxazole
6-Propionyl-2-(dimethylamino)naphthalene
Phase-sensitive detection of fluorescence
Resonance energy transfer

Ground electronic state

First excited singlet state
6-Methoxy-N-(3-sulfopropyl)quinoline
First excited triplet state
Time-to-amplitude converter
Time-correlated single-photon counting
Time-domain

Twisted internal charge-transfer state
6-(p-Toluidinyl)naphthalene-2-sulfonic acid
Time-resolved emission spectra
Tetramethylrhodamine 5- (and 6-)isothiocy-
anate

Tryptophan

Tyrosine

Single-letter code for tryptophan
Single-letter code for tyrosine



Glossary of Mathematical
Terms

Co

C()

D" or D_L

N(1)

P(r)

pKa

Acceptor or absorption

Speed of light

Characteristic acceptor concentration in
resonance energy transfer

Correlation function for spectral relaxation
Donor, diffusion coefficient, or rotational
diffusion coefficient

Rate of rotational diffusion around (displac-
ing) the symmetry axis of an ellipsoid of
revolution

Efficiency of energy transfer

Steady state intensity or fluorescence

Ratio of (% values, used to calculate parame-
ter confidence intervals

Emission spectrum

Fractional steady-state intensities in a mul-
tiexponential intensity decay

Efficiency of collisional quenching
Correction factor for anisotropy measure-
ments

Half-width in a distance or lifetime distribu-
tion

Intensity decay, typically the impulse re-
sponse function

Nonradiative decay rate

Solvent relaxation rate

Transfer rate in resonance energy transfer
Modulation at a light modulation frequency
®

Refractive index, when used in consideration
of solvent effects

Number of counts per channel, in time-cor-
related single-photon counting

Quantum yield

Probability function for a distance (r) distri-
bution

Acid dissociation constant, negative loga-
rithm

r(0)
r(f)

ro; O rog;

ro

max
)\'em

Anisotropy (sometimes distance in a dis-
tance distribution)

Average distance in a distance distribution
Time-zero anisotropy

Anisotropy decay

Distance of closest approach between donors
and acceptors in resonance energy transfer,
or fluorophores and quenchers

Fractional amplitudes in a multiexponential
anisotropy decay

Fundamental anisotropy in the absence of
rotational diffusion

; Anisotropy amplitudes in a multiexponential

anisotropy decay

Long-time anisotropy in an anisotropy decay
Modulated anisotropy

Forster distance in resonance energy transfer
Preexponential factors in a multiexponential
intensity decay

Angle between absorption and emission
transition moments

Radiative decay rate

Inverse of the decay time: y=1/1
Dielectric constant or extinction coefficient
Rotational correlation time

Orientation factor in resonance energy trans-
fer

Ratio of the modulated amplitudes of the
polarized components of the emission
Wavelength

Emission wavelength

Maximum emission wavelength

Excitation wavelength

Maximum excitation or absorption wave-
length for the lowest Sy, —S) transition
Emission maximum

Excited-state dipole moment

Ground-state dipole moment
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7 Wavenumber, in cm™!

Emission center of gravity

Time-resolved emission center of gravity, in
cm™!

Decay time

Average lifetime

Apparent lifetime calculated from the phase
angle at a single frequency

Donor decay time or solvent dielectric re-
laxation time

Solvent longitudinal relaxation time
Apparent lifetime calculated from the modu-
lation at a single frequency

TN
Ts
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Radiative or natural lifetime

Solvent relaxation time

Differential polarized phase angle, differ-
ence in phase between the parallel and per-
pendicular components of the emission
Phase angle at a light modulation frequency
(0]

Goodness-of-fit parameter, reduced chi-
squared

Sum of the squared weighted deviations
Light modulation frequency in radians per
second; 2w times the frequency in cycles per
second
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