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SYMBOLS USED IN THIS COURSE

read is less than

read is less than or equal to
read is greater than

read is greater than or equal to

- read is not equal to

%IV V IA A

read is approximately equal to
‘read angle

~

GREEK LETTERS USED IN THIS COURSE

Alpha
Beta
Gamma
Theta
Pi

Phi

S 8 © < ™ R

- IMPORTANT TRIGONOMETRIC FORMULAS

Polar Coordinates

x=rcos0, r=\/x2+y2,
- ' )
y=rsin6, 0= arctan;.
‘The Area of a Sector
K = 1r?6.

The Area of a Segment
K = 3r¥( — sin 8).



Law of Sines
a b c
sindA sin B sinC’

Law of Cosines
a® = b* + ¢* — 2bc cos 0,
b2 =c?+a* —2cacos b,

¢t =a®+ b* — 2abcos 6.

Law of "I‘a_ngents
a—b tan}4-B) b-c tan}(B-C)
a+b tani(A4+B) b+c tani(B+C)’
c—a tan}(C—4A)
c+a tan3(C + A)’

The Half-angle Formulas in Terms of the Sides of a Triangle

r : r
taniA=m, taniB=m, tan-}C:s_c’
sin %A = \/w’ sjn %B =;/£u)_(_s;c)’
" » bc o
sin 1C = (_s_-—a)_(s-—b)’
ab

where

r=\/(s—a)(s;—b)(s—c)and s=3a+b+ o).

The Area of a Triangle

K = }absin C.
532 sin Bsin C
= 4o sin 4

K =./s(s — a)(s — b)(s — o),
at+b+c

where s= 3
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PREFACE

Students of Plane Trigonometry often encounter more difficulty in the study
of the subject than is justified by the essential simplicity of the material. It is
for this reason that in this book we avoid what appears to be one of the
principal sources of their confusion.

In traditional textbooks on trigonometry, the student is introduced to
all of the six basic trigonometric functions each immediately following the
other. Then, very soon, he is required to give from memory, or to find from
tables, the value of each of the six functions for an angle of any magnitude.
For us who have lived with this subject for a long time, it requires no effort
to determine both the correct algebraic sign and the numerical value, regard-
less of the value of the angle or real number on which the function depends.
But experience shows that this is not such an easy matter for many students.

One of the principal innovations of this textbook is that here we take
just one trigonometric function at a time and carry it through evaluations,
trigonometric equations, applications to the right and the general triangles,
and graphs. For example, by the time the student has lived with only the
sine function through these applications, it has become thoroughly established
in his mind and will not easily be forgotten. This is done with the sine function
in Chapter 2, the cosine function in Chapter 3, and the tangent function in
Chapter 4. Then, having this thorough knowledge of the sine, cosine, and
tangent functions, the student has no difficulty extending his knowledge to
include the definitions and applications of the reciprocal functions, which
are treated in Chapter 5.

After studying the first five chapters a student should be able to (1) solve
both right and general triangles and many basic problems involving vectors,
(2) draw the graphs of all the trigonometric functions as well as composite
functions, and (3) solve many trigonometric equations. In fact, for many
students who are enrolled in some two-year curriculum such as drafting,
mechanical engineering, or electronics, or some four-year curriculum such
as medicine, dentistry, pharmacy, optometry, the first five chapters will give

\"



vi Preface

the necessary trigonometry. This does not mean that this textbook presents
a ‘“watered down version of trigonometry. In fact I have used these first
five chapters, experimentally, in classes for two semesters and found that one
can ultimately cover the subject matter in less time by using this approach
than can be done by the traditional method. This leaves more time for the
subjects of the later chapters, such as inverse functions and complex numbers,
which are often slighted at the end of the course. The entire book offers
a complete course in Plane Trigonometry and is especially adaptable to
courses of various lengths and purposes.

Modern notation has not been used, since many of our students do not
have a background in modern mathematics and the use of modern notation
would have required an additional introductory chapter and thus increased
the length of the course. Since only a limited number of days are available
for the course, the addition of new topics would leave less time for trigo-
nometry. It is my opinion that to do a good job of teaching a complete
course in plane trigonometry we must apply all of our time to that subject.

The unit circle has been used extensively as an aid in defining functions
and developing formulas and identities.

An abundance of illustrative examples with solutions, two hundred
seventy-five in number, anticipates the difficulties of the student and at the
same time sets before him applications of basic principles and orderly
solutions of exercises. The discussion of trigonometric graphs is more com-
plete than in many other books on the subject. One hundred thirty-seven
illustrative figures help to clarify the proofs, definitions, and examples. The
thirteen hundred eighty-eight exercises allow a student to obtain practice
on all parts of the theory by working either the odd-numbered or the even-
numbered exercises. Answers to odd-numbered exercises appear at the end
of the text. Answers to the even-numbered exercises are available in a separate
pamphlet.

Basic trigonometric formulas are listed inside the front cover and the
basic trigonometric identities inside the back cover so as to be immediately
available when needed.

I am deeply indebted to Professor Raymond W. Brink, Consulting
Editor of the Appleton-Century Mathematics Series, for his many suggestions
and painstaking attention to my manuscript. The elegant proof of the Law
of Cosines, the complete set of Tables, and more than a score of other passages
in the text of this book were taken by permission from the Third Edition of
Dr. Brink’s Plane Trigonometry, Appleton-Century-Crofts, N.Y., 1959.

Whittier, California
C.L.J.



TRIGONOMETRIC IDENTITIES

1 . iV g 1
(1‘) csco—sin—o.. (2) ?’faif.w__so' (3) cotﬂam—nﬂ.
sin 0 " cos @
@) tamo=2"o. (8) cotf= .

(8) sin’0 +cos’f=1. (7)‘ 1 -H:aﬁ’ 0 = sec? 8: (8) 1+ cot?8=csc?h.
(9) sin(—6) = —sin6. (10) cos(—@)=cos6. (11) tan(—6) = —tan®.
(12) cot(~6) = —cot§. (13) sec(—0) =sech. (14) osc(—0) = —cscO.

(15) cos(4A + B) = cos A cos B — sin A sin B.
- (16) cos(4 — B) = cos 4 cos B + sin A4 sin B.
(1) sin(4 + B) = sin A cos B + cos A sin B.
(18) sin(4 — B) = sin 4 cos B — cos A sin B.
tan 4 + tan B
B)=——uoouo——,
(19) ‘ taniA ) 1 —tan 4 tan B |
- tanA4 —tan B )
N etk
(20) taniA ) 1+tan A4 tan B
(21) sin 24 = 2 sin A4 cos A.
-(22a) cos 24 = cos? A — sin® 4.
(22b) =1-2sin? 4.

(22¢) =2cos’ 4 - 1.



4
(23) tn 24 =

1—-tan®* 4~
(29) sin3d = + /1"’;”.
(25) cos}A=i\/l+;OSA.
(26) tandd = + \/i——:—%:: unless cos A '==‘ -1
(22) sin A cos B = 4[sin(4 + B) + sin{4 — B)].
(28) cos A sin B = 4[sin (4 + B) = sin(4 — B)].
(29) sin 4 sin B = }[cos(4 — B) — cos(4 + B)].

(30) ~cos A cos B ='}[cos(4 + B) + cos(4 — B)].
(31)  sinx +siny =2sin}(x + ) éo; 3x = y).
(32) R y = 2cos }(x + ) sinl Hx - ).
(33)  cosx+ cosy=2cos ¥(x + y) cos #(x — y).
(38)  cosx —cos y = —2sin ¥(x + ) sin 3(x — y).

(38) acos + bsin 6 = ccos (8 — a),

g b a
‘where ¢ =./a’+ b, sing=-, coso=-, tan o =
¢

L I~
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Introduction

101 TRIGONOMETRY

Trigonometry—a branch of mathematics that deals with the relationships
between the angles and sides of triangles and the theory of the periodic
functions connected with them—is a basic tool used in the development of
mathematics and many sciences such as physics, engineering, astronomy, and
the like.

102 RECTANGULAR COORDINATES

Although it is assumed that the student has had experience with the rectangu-
lar coordinate system, a brief review of the subject is given.

Two perpendicular lines are drawn meeting at O (Fig. 101). The point O
is called the origin, the line OX the x-axis, and the line OY the y-axis. A
convenient unit of length is used to mark off distances to the right and left and
up and down from the origin O. Distances to the right are taken as positive
values of x and distances to the left are taken as negative values of x. Positive
values of y are measured upward and the negative values of y are measured
downward.

The position of any point P on the xy-plane is determined by a pair of
numbers called the coordinates of the point. The distance of P to the right or
left of the origin is called the abscissa or x-coordinate of point P, and y, the
vertical distance of P from the x-axis, is the ordinate or y-coordinate of point
P. Point P is said to have the coordinates (x, y) and may be referred to as the

point (x, »).



2 1 Introduction

Example 1. Locate the point (2, 3).
Start at the origin and move two units to the right, then up three units
(Fig. 101).

Example 2. Locate the point (0, —2).

Start at the origin, but, because the first number is zero, do not move
right or left. The second number being negative directs us down two units
(Fig. 101).

Example 3. Locate the point (—3, 2).
Start at the origin and move left three units, then up two units (Fig. 101).

3 2,3

0,-2)

Figure 101

103 THE FORMATION OF ANGLES

A plane angle is formed if two half lines have the same end-point. This end-
point is called the vertex of the angle and the two half lines are the sides of the
angle (Fig. 102). We can think of the angle as being generated when a half
line whose end-point is the vertex of the angle rotates in the plane about the
vertex from the position of one side of the angle until it coincides with the



