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1
Light Microscopy

Light or optical microscopy is the primary means for scientists and engineers
to examine the microstructure of materials. The history of using a light micro-
scope for microstructural examination of materials can be traced back to the
1880s. Since then, light microscopy has been widely used by metallurgists to
examine metallic materials. Light microscopy for metallurgists became a special
field named metallography. The basic techniques developed in metallography are
not only used for examining metals, but also are used for examining ceramics
and polymers. In this chapter, light microscopy is introduced as a basic tool
for microstructural examination of materials including metals, ceramics, and
polymers.

1.1
Optical Principles

1.1.1
Image Formation

Reviewing the optical principles of microscopes should be the first step to under-
standing light microscopy. The optical principles of microscopes include image
formation, magnification, and resolution. Image formation can be illustrated by the
behavior of a light path in a compound light microscope as shown in Figure 1.1.
A specimen (object) is placed at position A where it is between one and two focal
lengths from an objective lens. Light rays from the object first converge at the
objective lens and are then focused at position B to form a magnified inverted
image. The light rays from the image are further converged by the second lens
(projector lens) to form a final magnified image of an object at C.

The light path shown in Figure 1.1 generates the real image at C on a screen
or camera film, which is not what we see with our eyes. Only a real image can be
formed on a screen and photographed. When we examine microstructure with our
eyes, the light path in a microscope goes through an eyepiece instead of projector lens
to form a virtual image on the human eye retina, as shown in Figure 1.2. The virtual
image is inverted with respect to the object. The virtual image is often adjusted to
be located as the minimum distance of eye focus, which is conventionally taken

Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, Second Edition. Yang Leng.
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1.1  Principles of magnification in a microscope.
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Figure 1.2 Schematic path of light in a microscope with an eyepiece. The virtual image is
reviewed by a human eye composed of the eye lens and retina.

as 250 mm from the eyepiece. A modern microscope is commonly equipped with
a device to switch from eyepiece to projector lens for either recording images on
photographic film or sending images to a computer screen.

Advanced microscopes made since 1980 have a more complicated optical ar-
rangement called “infinity-corrected’” optics. The objective lens of these microscopes
generates parallel beams from a point on the object. A tube lens is added between
the objective and eyepiece to focus the parallel beams to form an image on a plane,
which is further viewed and enlarged by the eyepiece.
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The magnification of a microscope can be calculated by linear optics, which tells
us the magnification of a convergent lens, M:

v—f
5

where f is the focal length of the lens and v is the distance between the image and
lens. A higher magnification lens has a shorter focal length, as indicated by Eq.
(1.1). The total magnification of a compound microscope as shown in Figure 1.1
should be the magnification of the objective lens multiplied by that of the projector
lens.

M =

(1.1)

(V1 —fi)v2 —f)
fif

When an eyepiece is used, the total magnification should be the objective lens
magnification multiplied by the eyepiece magnification.

M= MM, (1.2)

1.10.2
Resolution

We naturally ask whether there is any limitation for magnification in light mi-
croscopes because Eq. (1.2) suggests there is no limitation. However, meaningful
magnification of a light microscope is limited by its resolution. Resolution refers
to the minimum distance between two points at which they can be visibly distin-
guished as two points. The resolution of a microscope is theoretically controlled by
the diffraction of light.

Light diffraction controlling the resolution of microscope can be illustrated with
the images of two self-luminous point objects. When the point object is magnified,
its image is a central spot (the Airy disk) surrounded by a series of diffraction
rings (Figure 1.3), not a single spot. To distinguish between two such point objects
separated by a short distance, the Airy disks should not severely overlap each other.
Thus, controlling the size of the Airy disk is the key to controlling resolution. The
size of the Airy disk (d) is related to the wavelength of light (1) and the angle
of light coming into the lens. The resolution of a microscope (R) is defined as the
minimum distance between two Airy disks that can be distinguished (Figure 1.4).
Resolution is a function of microscope parameters as shown in the following
equation:

d 0.61A

R:—: .
2 usina

(1.3)

where 1 is the refractive index of the medium between the object and objective lens
and « is the half-angle of the cone of light entering the objective lens (Figure 1.5).
The product, u sin «, is called the numerical aperture (NA).

According to Eq. (1.3), to achieve higher resolution we should use shorter-
wavelength light and larger NA. The shortest wavelength of visible light is about
400nm, while the NA of the lens depends on « and the medium between the
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Figure 1.3 A self-luminous point object and the light-intensity distribution along a line

passing through its center.
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Figure 1.4 Intensity distribution of two airy disks with a distance d/2. |, indicates the max-

imum intensity of each point and |, represents the overlap intensity.

lens and object. Two media between object and objective lens are commonly used:
either air for which =1, or oil for which = 1.5. Thus, the maximum value of
NA is about 1.5. We estimate the best resolution of a light microscope from Eq.

(1.3) as about 0.2 um.
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Figure 1.5 The cone of light entering an objective lens showing « is the half-angle.

1.1.2.1 Effective Magnification
Magnification is meaningful only in so far as the human eye can see the features
resolved by the microscope. Meaningful magnification is the magnification that is
sufficient to allow the eyes to see the microscopic features resolved by the micro-
scope. A microscope should enlarge features to about 0.2 mm, the resolution level of
the human eye. This means that the microscope resolution multiplying the effective
magnification should be equal to the eye resolution. Thus, the effective magnification
of a light microscope should approximately be M ;= 0.2 = 0.2 x 10> = 1.0 x 10°.
A higher magnification than the effective magnification only makes the image
bigger, may make eyes more comfortable during observation, but does not provide
more detail in an image.

1.1.2.2 Brightness and Contrast

To make a microscale object in a material specimen visible, high magnification is
not sufficient. A microscope should also generate sufficient brightness and contrast
of light from the object. Brightness refers to the intensity of light. In a transmission
light microscope the brightness is related to the numerical aperture (NA) and
magnification (M).

(NA)?

Brightness = Y2

(1.4)

In a reflected-light microscope the brightness is more highly dependent on NA.

(NA)*

MZ

Brightness = (1.5)
These relationships indicate that the brightness decreases rapidly with increasing
magnification, and controlling NA is not only important for resolution but also for
brightness, particularly in a reflected-light microscope.
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Contrast is defined as the relative change in light intensity (I) between an object
and its background.

Iobject - Ibackground

Contrast = (1.6)

Ibackground
Visibility requires that the contrast of an object exceeds a critical value called the
contrast threshold. The contrast threshold of an object is not constant for all images
but varies with image brightness. In bright light, the threshold can be as low as
about 3%, while in dim light the threshold is greater than 200%.

1.3
Depth of Field

Depth of field is an important concept when photographing an image. It refers to
the range of position for an object in which image sharpness does not change.
As illustrated in Figure 1.6, an object image is only accurately in focus when the
object lies in a plane within a certain distance from the objective lens. The image
is out of focus when the object lies either closer to or farther from the lens. Since
the diffraction effect limits the resolution R, it does not make any difference to the
sharpness of the image if the object is within the range of D; shown in Figure 1.6.
Thus, the depth of field can be calculated.
d 2R 1.22x

_ (1.7)

tan o tan a 1 sin « tan «

D¢

Equation (1.7) indicates that a large depth of field and high resolution cannot be
obtained simultaneously; thus, a larger D; means a larger R and worse resolution.

R . e
]
: Aperture
)
1
d
------ ———
1
it e N e s s
Focal plane

Figure 1.6 Geometric relation among the depth of field (D), the half-angle entering the
objective lens («), and the size of the Airy disk (d).



